## SERVICE MANUAL

VHF TRANSCEIVER
IC-H6

Icom Inc.

## table of contents

SECTION 1 SPECIFICATIONS ..... 1-1
SECTION 2 OPERATING CONTROLS ..... 2-1~2
SECTION 3 CIRCUIT DESCRIPTION ..... 3-1~4
3-1 RECEIVER CIRCUITS ..... 3.1
3-2 TRANSMITTER CIRCUITS ..... 3-2
3-3 PLL CIRCUITS ..... 3-2~3
3-4 OTHER CIRCUITRY ..... 3-3~4
SECTION 4 BLOCK DIAGRAM ..... 4-1
SECTION 5 INSIDE VIEWS ..... 5-1
SECTION 6 MECHANICAL PARTS AND DISASSEMBLY ..... 6-1~5
6-1 DISASSEMBLY OF THE CASES. ..... 6-1
6-2 DISASSEMBLY OF UNITS ..... 6-2~3
6-3 PTT SPRING ASSEMBLY ..... 6-3
6-4 TOP PANEL CONSTRUCTION ..... 6-4
6-5 UNIT BOTTOM ASSEMBLY ..... 6-5
SECTION 7 MAINTENANCE AND ADJUSTMENT ..... 7.1~ 9
7.1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT ..... 7-1
7-2 PRELIMINARY CHECKS ..... 7-2
7-3 PREPARATION AND PROCEDURE BEFORE SERVICING ..... 7-2~3
7-4 HOW TO CHECK ..... 7-3~5
7-5 BASIC ALIGNMENT PROCEDURE ..... 7-6~9
SECTION 8 BOARD LAYOUT ..... 8-1~3
SECTION 9 VOLTAGE CHARTS ..... 9-1~ 4
SECTION 10 TROUBLESHOOTING ..... 10-1~4
SECTION 11 IC SPECIFICATIONS ..... 11-1~3
SECTION 12 PARTS LIST ..... 12-1~ 4

## SECTION 1 SPECIFICATIONS

GENERAL

| Number of Semiconductors | Transistors 43 |
| :---: | :---: |
|  | FET 3 |
|  | IC 5 |
|  | Diodes 15 (not including diodes on the matrix board) |
| Number of Channels | 6 programmable channels (Transmit and Receive frequencies are programmable independently for each channel) |
|  | Operation; Simplex, Semi-duplex |
| Channel Spacing | 25 KHz ( 5 KHz increments frequencies are programmable) |
| Frequency Stability | 0.001 Percent |
| Usable Temperature | -20 Degrees $C$ to 60 Degrees $C$ <br> (-4 Degrees $F$ to 140 Degrees F) |
| Antenna Impedance | 50 ohms unbalanced |
| Power Supply Requirement | DC 8.4 V ; with attendant power pack IC-CM3, DC 7 to 12 V negative ground is acceptable |
| Current Drain at 8.4 V | Transmitting |
|  | At 2.5 watts output Approx. 700 mA |
|  | Receiving |
|  | At max audio output Approx. 130 mA |
|  | Squelched Approx. 25 mA |
| Dimensions | $116.5 \mathrm{~mm}(\mathrm{H}) \times 65 \mathrm{~mm}(\mathrm{~W}) \times 45 \mathrm{~mm}$ (D) without power pack |
|  | Attendant power pack, IC-CM3: $49 \mathrm{~mm}(\mathrm{H}) \times 65 \mathrm{~mm}(\mathrm{~W}) \times 35 \mathrm{~mm}$ (D) |
| Weight | 510 g including power pack, IC-CM3, and flexible antenna |
| RECEIVER |  |
| Frequency Range | Specified 2 MHz segment ( 5 MHz with reduced specification) within; $150.005 \sim 155.000 \mathrm{MHz}$ |
|  | $155.005 \sim 160.000 \mathrm{MHz}$ |
|  | $160.005 \sim 165.000 \mathrm{MHz}$ |
|  | $165.000 \sim 170.000 \mathrm{MHz}$ |
| Receiving System | Double-conversion superheterodyne |
| Modulation Acceptance | $16 \mathrm{~F}_{3} \quad \pm 7.5 \mathrm{KHz}$ (F3E 16K0) |
| Intermediate Frequency | 1st: 16.9 MHz |
|  | 2nd: 455 KHz |
| Sensitivity | Less than $0.5 \mu \mathrm{~V}$ for 20 dB noise quieting |
|  | Less than $0.4 \mu \mathrm{~V}$ for 12 dB SINAD |
| Squelch Sensitivity | Less than $0.4 \mu \mathrm{~V}$ |
| Spurious Response Rejection Ratio | More than 60 dB |
| Selectivity | More than 65 dB at adjacent channel |
| Intermodulation Rejection Ratio | More than 60 dB |
| Audio Output Power | More than 300 mW at $10 \%$ distortion |
| Audio Output Impedance | 8 ohms |
| TRANSMITTER |  |
| Frequency Range | Specified 2 MHz segment ( 5 MHz with reduced specification) |
| Output Power | 2.5 Watts (4 watts with 10.8V battery pack IC-CM5) |
| Emission Mode | $16 \mathrm{~F}_{3}$ (F3E 16K0) |
| Modulation System | Variable reactance frequency modulation |
| Max. Frequency Deviation | $\pm 5 \mathrm{KHz}$ |
| Spurious Emission | More than 60dB below carrier |
| Microphone | Built-in electret condenser microphone |
|  | Optional speaker-microphone (IC-CM9) can be used |

## SECTION 2 OPERATING CONTROLS

TOP PANEL


FRONT PANEL
REAR PANEL

(1) ANTENNA CONNECTOR

Connect the supplied flexible antenna. An external antenna can be used, using a BNC connector.
(2) TRANSMIT/BATTERY INDICATOR

Illuminates in the transmit mode. Also indicates the battery condition; during transmission. The voltage of Nickel-Cadmium batteries drops rapidly just before they are exhausted, so when this indicator goes out, be sure to immediately stop using it, and charge the batteries again.
(3) CHANNEL SELECT SWITCH

Selects one of the programmed channels.
(4) SQUELCH CONTROL

Sets the squelch threshold level. To turn OFF the squelch function, rotate this control completely counterclockwise. To set the threshold level higher, rotate the control clockwise.
(5) VOLUME CONTROL and POWER SWITCH

When the control is turned completely counterclockwise, the power is OFF. By turning the control clockwise beyond the "click", the unit is turned ON and the audio level increases by further rotating it clockwise.
(6) EXTERNAL SPEAKER JACK

When an external speaker (or an earphone) is used, connect it to this jack. Use a speaker with an impedance of 8 ohms. When the external speaker is connected the built-in speaker does not function.
(7) EXTERNAL MIC JACK

When an external microphone is used, connect it to this jack. See the schematic for the proper hookup. When the external microphone is connected the built-in microphone does not function. The IC-CM9 optional speaker-microphone can also be used.

(8) PUSH TO TALK (PTT) SWITCH

For transmission, press this switch and talk into the microphone with normal voice. The internal microphone is of the electret-condenser type and provides good pickup for all voice levels.
(9) CHARGER CONNECTOR

Connects to the output plug of the wall charger CM-25U/E or other 12 V DC power source.
(10) BATTERY CHARGE INDICATOR

Lights during battery charging.

## 3-1 RECEIVER CIRCUITS

## 3-1-1 ANTENNA SWITCHING CIRCUIT

Signals from the antenna connector are fed to the antenna switching circuit through Chebyshev low-pass filter consisting of L229, L230, C295, C297 and C298 in the PLL board.

The antenna switching circuit employs a quater wave switching circuit.
In the receive mode, switching diodes, D216 and D217 are turned OFF, and they make isolation against the transmitter circuit and matching circuit, and the incoming signals are fed to the RF amplifier.

## 3-1-2 RF AMPLIFIER AND FIRST MIXER

The signals from the switching circuit are fed to the cascode amplifier Q101 and Q102.
The amplified signals are fed to the gate of the first mixer Q103 through the band-pass filter L102 ~ L104, which reduces interference and intermodulation from out of the band signals.

To the source of Q103, a 140 MHz signal ${ }^{*}$ is supplied from the PLL circuit to convert the RF signals into 16.9 MHz first IF signals. (*This frequency differs depending on the version, and it can be calculated by formula; "Receive frequency" -16.9 MHz .)

The first IF signals are taken from the drain of 0103 and fed to the IF circuit.

## 3-1-3 IF CIRCUIT

The first IF signals from 0103 are fed to the matched pair crystal filter FI101, then IF amplifiers 0104 and Q105.

The amplified signals are fed to IC101. IC101 is composed of the second local oscillator, second mixer, limiter amplifier, quadrature detector and active filter circuits.

The second local oscillator oscillates 16.445 MHz with X 101 , and is fed to the second mixer with the first IF signals to convert into 455 KHz second IF signals. The second IF signals are put out from Pin 3, and fed to external ceramic filter FI102 which has excellent selectivity, then fed to IC101 (Pin 5) again to amplify and detect.
The detected AF signals are put out from Pin 9.

## 3-1-4 AF AND SQUELCH CIRCUITS

The detected AF signals are put 6dB/Octave de-emphasis by integral circuit consisting of R117 and C126, and fed to AF power amplifier IC102 through the VOLUME control R1, to obtain enough power to drive the speaker.

Noise components put out from Pin 9 of IC101 are fed to IC101 (Pin 10) again through the SQUELCH control R2, which controls the squelch threshold level, filtered about 20 KHz signal (noise) and put out from $\operatorname{Pin} 11$.

This signal (noise) is rectified by Q113, integrated by R135, R136 and C136, and turns Q114ON and turns OFF the regulator for AF power amplifier consisting of D103, Q115 and Q116.

This reduces the current drain of the set, in the standby condition. When a signal is received, noise is suppressed by the signal and turns Q114 OFF and the regulator is turned ON and supplies regulated voltage to the AF power amplifier, and incoming signal can be heard from the speaker.
In the transmit mode, a voltage is applied to Q114 and turns it ON, and turns the regulator OFF the same as in the standby condition.

## 3-2 TRANSMITTER CIRCUITS

## 3-2-1 MIC AMPLIFIER CIRCUIT

Audio signals from the microphone are fed to the limiter amplifier, consisting of Q125~Q128, which has $6 \mathrm{~dB} /$ Octave response between 300 Hz and 3 KHz .

The output of the limiter amplifier is similar to rectangular waves and includes harmonics. These harmonics are eliminated by the low-pass filter Q129, which cuts 3 KHz or higher. Filtered signals are fed to the VCO in the PLL board to make modulation.

## 3-2-2 MULTIPLIER AND DRIVER CIRCUITS

The VCO oscillates a half of a transmitting frequency, thus the multiplier 0208 and O209, multiplies it two times to obtain $156 \mathrm{MHz}^{*}$ transmitting frequency.

This $156 \mathrm{MHz}{ }^{*}$ signal is fed to amplifiers Q211 and O212 through band-pass filter L219, L220 and L221, L222 to obtain 200 milliwatts pure $156 \mathrm{MHz}^{*}$ signal. While switching from receive to transmit, Q 210 is turned ON by the charged voltage of C269, until the charged voltage has been discharged, and this function cuts the bias voltage of $\mathrm{Q} 211 \sim \mathrm{Q} 213$. This prevents transmission of unwanted signals.
(*This frequency differs depending on the version.)

## 3-2-3 POWER AMPLIFIER CIRCUIT

The output signals from 0212 is fed to the power amplifier Q213, and amplified to 2.5 watts.
In the transmit mode, D216 and D217 are turned ON, and D217 makes L228 have high-impedance and D216 feeds the signals to the antenna through the low-pass filter.

## 3-3 PLL CIRCUITS

## 3-3-1 LOCAL OSCILLATOR CIRCUIT

The crystal oscillator Q206 oscillates $35.77625 \mathrm{MHz}^{*}$ with X 202 for receive, 40.00125 MHz * with $\times 203$ for transmit, and the signal at two times this frequency is taken from the collector of Q207, and fed to the mixer of the PLL circuit.
(*These frequencies differ depending on the version.)

In the receive mode, $R+6 \mathrm{~V}$ is applied to D210 through R223, L211 and R227, and D210 is turned ON and selects $\times 202$.

In the transmit mode, $T+6 \mathrm{~V}$ is applied to D211 through R224, L212 and R228, and D211 is turned ON and selects $\times 203$.

## 3-3-2 MIXER, LOW-PASS FILTER AND AMPLIFIER CIRCUITS

The output signals from the local oscillator circuit and the VCO signals fed through buffer amplifiers Q202 and Q203 are mixed by the mixer Q204. The output signals are fed to the low-pass filter to filter out only the signals below 7 MHz , then fed to Q 205 to be amplified to proper drive level (more than $3 \mathrm{Vp}-\mathrm{p}$ ) of the programmable divider 1C201.

## 3-3-3 PROGRAMMABLE DIVIDER CIRCUIT

The input signals at Pin 2 of IC201 are divided by the BCD input signals from the matrix board at Pin $3 \sim 14$.

The programmable divider is also called the $1 / N$ counter and the $B C D$ value is $N$. The relationship between the operating frequency and the divide number $N$ is:

N (divide number of programmable divider) $=$
$\frac{\text { Receive (or Transmit) Frequency (MHz) - Local Osc Frequency (MHz) }}{0.005}-1000$

## 3-3-4 REFERENCE FREQUENCY GENERATOR CIRCUIT

Reference frequency generator IC203 consists of a crystal oscillator and a highspeed divider. X201 oscillates at 5.12 MHz , which is divided by 2048 . The 2.5 KHz reference frequency is fed to phase detector IC202. This 2.5 KHz reference frequency decides the variation step of the PLL output frequency.

## 3-3-5 PHASE DETECTOR AND LOOP FILTER CIRCUITS

Digital phase detector, IC202, detects the phase difference of the pulse signals of the 2.5 KHz reference frequency and the output signal of the programmable divider, and proportionately puts out pulse signals at Pin 3, which becomes high impedance when the PLL is locked.

Pin 4 is for detecting the lock failures and changes to ground level according to the phase difference of the two pulse signals. When the lock fails, the pulse signal from Pin 4 is integrated by R202 and C215. When the integrated voltage exceeds the junction voltage of 0214 's base, Q 214 is turned ON and then Q107 in the MAIN boards is turned ON.

The collector of Q107 is connected to the base of Q108, so the base voltage of Q 108 becomes ground level, and Q108 and Q106 are shut off to prevent transmitting unwanted signals.

The loop filter, consisting of R204, R205, R206, C213 and C214, converts the pulse signal from Pin 3 into a DC voltage and decides the response time of the whole loop.

The output signals are fed to tuning diode D203 of the VCO circuit as the control voltage for the VCO frequency set.

## 3-3-6 VCO CIRCUIT

The VCO (Voltage-Controlled Oscilator) is a Colpitts circuit using 0201 , and oscillates in $70 \sim 80 \mathrm{MHz}$ range.

The oscillator frequency is controlled by a DC voltage which is supplied from the loop filter to varactor diode D203.

In the receive mode, R+6V is applied to D204's anode through L201, and D204 is turned ON and shunts C 220 . Thus the free-run frequency of the VCO is lowered.

In the transmit mode, T+6V is applied to D204's cathode through D205 and L202, D204 is turned OFF, and C220 is inserted in the oscillator circuit in series. Thus the free-run frequency of the VCO is increased. In the same time, the VCO signal is frequency modulated by the audio signals from the microphone which are applied to the gate of Q201 and varies Q201's mutual conductance.

## 3-4 OTHER CIRCUITRY

## 3-4-1 POWER SUPPLY CIRCUIT

The regulated 6 V is supplied to the main circuits, so that the set operates under a stable condition with as low power voltage as possible.

The power supply voltage is fed to the AF power amplifier through the squelch switching circuit and to the 6 V regulator consisting of $\mathrm{Q} 117 \sim \mathrm{Q} 120$ and zener diode D104. This regulated 6 V is supplied to the PLL circuit.

In the transmit mode, the base of Q123 is grounded through R155, the microphone and the PTT switch, and Q123 is turned ON. Thus Q106 and Q108 are turned ON and T+6V is actuated, and supplied to the transmitter circuit. At the same time, $\mathrm{T}+6 \mathrm{~V}$ turns $\mathbf{Q 1 1 2 \mathrm { ON } \text { , and the power supply voltage is applied to }}$ the MIC amplifier circuit through Q112.

In the receive mode, Q123 is turned OFF and the bias voltage of $\mathbf{Q 1 0 9} \mathrm{ON}$. Thus the R+6V is actuated and supplied to the PLL board to switch the local oscillator crystal and the driver transistors of the transmitter circuit.

At the same time, R+6V turns ON the voltage boost circuit consisting of Q110 and Q111, and +6 V is supplied to the receiver circuit.

## 3-4-2 LED INDICATOR CIRCUIT

This LED is lit in the transmit mode, but when the power supply voltage becomes less than 7 V , it will not be lit.

The power supply voltage is divided by R148 and R149, and applied to the base of Q121. The emitter of Q 121 is connected to the regulated 6 V source. When the power supply voltage is more than 7 V , Q121 is turned OFF, Q122 is turned ON and T+6V is applied to the LED through Q122 and R150, and the LED is lit.

## 3-4-3 DIODE MATRIX BOARD

The set incorporates a diode matrix board to determine its operation frequencies, and six channels each can be programmed into the board for transmit and receive.
+6 V is applied to each channel line, one of receive channels $1 \sim 6$ and transmit channel $1 \sim 6$, through the channel select switch, and it is converted to BCD codes by diodes programmed into the board, then fed to IC201 to determine an operation frequency.

When duplex transmit function is required, calculate each $N$ value for transmit frequency and receive frequency and program diodes into the board independently.

The receive only function is provided for channel $2 \sim$ Channel 6 by inserting a diode into the receive only line. At this time, a voltage is applied to the base of Q107 on the MAIN board through R404, and it turns Q107 ON and Q106 OFF. Thus, the set does not turn to the transmit mode, even if the PTT switch is depressed.

Crystal Frequency Chart

| Operating Frequency Range | Crystal Frequency (MHz) |  | Local Oscillator <br> Frequency (MHz) |
| :---: | :---: | :---: | :---: |
|  | $\times 202$ (Receive) | $\times 203$ (Transmit) |  |
| $150.005 \sim 155.000 \mathrm{MHz}$ | 32.02625 | 36.25125 | 150.005 |
| $155.005 \sim 160.000 \mathrm{MHz}$ | 33.27625 | 37.50125 | 155.005 |
| $160.005 \sim 165.000 \mathrm{MHz}$ | 34.52625 | 38.75125 | 160.005 |
| $165.005 \sim 170.000 \mathrm{MHz}$ | 35.77625 | 40.00125 |  |

NOTE: The local oscillator frequency for calculation $N$ value is the four times of the crystal frequency.


## SECTION 5 INSIDE VIEWS

MAIN UNIT


PLL UNIT


## SECTION 6 MECHANICAL PARTS AND DISASSEMBLY

### 6.1 DISASSEMBLY OF THE CASES

1. Turn the power switch off and remove the power pack.
2. Remove two screws (A) on the rear panel and four screws on the bottom as shown in the figure.

3. Remove the front panel as shown in the figure. At this time, be sure not to damage the engaged parts at the top (circled with dotted lines).
(1) open the bottom slightly and (2) slide the front panel downwards.


## 6-2 DISASSEMBLY OF UNITS



1. When you wish to program some operation frequencies (channels), remove the rear panel, then unplug the connectors between the matrix board and PLL board, and tilt the matrix board as shown in the figure.

When you wish to remove the matrix board from the set, unplug the two connectors located on the front side end of the board.


To see the printed sides of the PC boards, open the chassis by removing two screws (C) located above and below the PTT spring.


## 6-3 PTT SPRING ASSEMBLY (HOW TO REPLACE PTT SPRING)

1. The PTT spring is soldered at its top as shown in the figure.
2. Remove the old spring by heating the soldered point.
3. Solder the hole at the top of the new spring.
4. Make sure that the new spring is soldered on parallel to the chassis.



6-5 UNIT BOTTOM ASSEMBLY (BOTTOM VIEW)


## (HOW TO REPLACE CONTACT SPRING)

1. Remove the sliding guide by removing the four screws as shown.
2. Remove the contact spring by removing the two screws as shown.
3. Set the new contact spring so that the split of the spring is on the positive side and the other end on the negative side.
4. Tighten the two screws.


### 7.1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT

(1) FREQUENCY COUNTER
(2) SIGNAL GENERATOR
(3) MULTIMETER
(4) AC MILLIVOLTMETER
(5) RF VOLTMETER
(6) RF WATTMETER (Terminated Type)
(7) AF OSCILLATOR
(8) OSCILLOSCOPE
(9) FM DEVIATION METER
(10) DIRECTIONAL COUPLER
(11) AMPERMETER
(12) DUMMY LOAD OR EXTERNAL SPEAKER
(13) VOLTAGE REGULATED POWER SUPPLY

| FREQUENCY RANGE | $0.1-180 \mathrm{MHz}$ |
| :---: | :---: |
| ACCURACY | BETTER THAN $\pm 1 \mathrm{ppm}$ |
| SENSITIVITY | 100 mV or BETTER |
| FREQUENCY RANGE | $0.1 \mathrm{MHz} \cdot 180 \mathrm{MHz}$ |
| OUTPUT VOLTAGE | $-20-90 \mathrm{~dB}(0 \mathrm{~dB}=1 \mu \mathrm{~V})$ |
| $50 K \Omega /$ olt or better |  |
| MEASURING RANGE | 10mV-2V |
| FREQUENCY RANGE | $0.1-180 \mathrm{MHz}$ |
| MEASURING RANGE | 0.01-10V |
| MEASURING RANGE | $5 \sim 10$ Watts |
| FREQUENCY RANGE | 140.180 MHz |
| IMPEDANCE | 50 OHMS |
| SWR | LESS THAN 1.1 |
| OUTPUT FREQUENCY | $200 \cdot 3000 \mathrm{~Hz}$ |
| OUTPUT VOLTAGE | 0-200mV |
| DISTORTION | LESS THAN 0.1\% |
| FREQUENCY RANGE | DC -15 MHz |
| MEASURING RANGE | 0.01-10V |
| FREQUENCY RANGE | $140 \sim 180 \mathrm{MHz}$ |
| MEASURING RANGE | $0 \sim \pm 10 \mathrm{KHz}$ |
| FREQUENCY RANGE | $140 \sim 180 \mathrm{MHz}$ |
| MEASURING RANGE | $0 \sim 1.5 \mathrm{~A} \mathrm{DC}$ |
| IMPEDANCE | 8 OHMS |
| OUTPUT VOLTAGE | 5~11V DC (adjustable) |
| CAPACITY | 1.5A OR MORE |

## 7-2 PRELIMINARY CHECKS

## 7-2-1 TRANSMITTER OUTPUT CHECKS



1. Connect a 50 ohms RF wattmeter to the ANT connector.
2. Setting the Set to any programmed channel and key the transmitter. Observe the RF power OUTPUT.
3. Power output should be $2.5 \sim 3.0$ watts at rated input (power supply) voltage.

## 7-2-2 RECEIVER CHECKS

Make all checks at 8.4 V DC

1. Settings of controls and switches

Power switch ON
Squelch Control Frequency

Fully counterclockwise Any programmed channel

2. Connect an AF voltmeter to the EXT SP jack and set the SQL control fully counterclockwise.
3. Connect the RF output of a VHF signal generator to the ANT connector.
4. Adjust the VOL control and the AF voltmeter range.

Adjust the VOL control for a full scale reading on the AF voltmeter. Don't change the VOL control setting after this adjustment.
5. Set the signal generator to the receiving frequency and adjust the output level of the signal generator until the AF voltmeter shows a 20 dB decrease in reading.
6. The signal generator output voltage at this point is the 20 dB quieting sensitivity.

## 7-3 PREPARATION AND PROCEDURE BEFORE SERVICING

1. Confirm defective operation and check to make sure setup or external sources are not the cause of the problem.
2. Proper tools and measuring instruments are required for repair and adjustment. Don't try to repair or modify without them.
3. Remove the transceiver case as shown on Page 6-1. Use a screw driver that fits the screw.
4. To open the hinge chassis remove the two screws as shown on Page 6-2.
5. Attach an $8.0 \sim 11.0 \mathrm{~V}$ DC external power source to the battery clip or screw. Be sure to check the polarity.
6. In the case of a transmission problem, a dummy load should be connected to the antenna connector. In the case of a receiving problem, an antenna or signal generator is connected to the antenna connector. Be careful not to transmit into the signal generator.
7. Recheck for the suspected malfunction with the power switch on.
8. Check the defective circuit and measure the DC voltages of the collector, base and emitter of each transistor.
9. When checking a transmission problem, it is convenient to short circuit an accessory mic connector plug and insert it, turning on the transmitter.

## 7-4 HOW TO CHECK

## 7-4-1 RECEIVE

1. Check the frequency of P.L.L. unit when you are unable to receive with a strong signal present and noise present when turning up the AF volume.
2. When no noise is present at the speaker, check audio frequency amplifier or 6 V regulator first.
3. Inject RF through a $0.01 \mu \mathrm{~F}$ capacitor from an FM signal generator modulated with 1 KHz audio modulation (FM), to points (A) through (D) in order, check for receiver output.
$(A)=$ Selected channel frequency
(B) = Selected channel frequency
(C) $=16.900 \mathrm{MHz}$
$(D)=16.900 \mathrm{MHz}$
4. Check $(E)$ and $(F)$ with an oscilloscope, for demodulated output in the audio frequency range.


## 7-4-2 TRANSMITTER

1. Check $(A)$ through $(G)$ in order with $R F$ voltmeter.
2. When the transmitter output is low, check regulated power supply voltage first, do not turn coil trimmers.
3. When transmission is normal, RF is present and it is not possible to measure the DC voltage accuratelv with a voltmeter.


## 7-4-3 MODULATION

1. Put a signal into the EXT MIC connector $(1 \mathrm{KHz} 40 \mathrm{mV})$ with an AF oscillator or an external mic.
2. Check the $A F$ voltages $(A)$ through $(E)$ in order with an oscilloscope.


## 7-4-4 P.L.L.

1. Check (A) with an oscilloscope. A lock failure is indicated by an instability or absence of the wave form. Check as follows:
2. Check the Frequency of the master oscillator $(5.12 \mathrm{MHz})$. If a $2.5 \mathrm{KHz} 5 \mathrm{Vp}-\mathrm{p}$ squarewave is not observed at ( $B$ ), measure DC voltage on Pin 5 of IC203 if no oscillation.
3. Wave measure the output of (C) and (D) with an oscilloscope.
4. Measure DC voltage of Q201, Q202, Q203, Q204 and Q205.
5. If the transmit or receive frequency differs from the programmed frequency, check the voltage of A1 to C4 on the IC201 (BCD control lines from matrix board).


### 7.5 BASIC ALIGNMENT PROCEDURE

## 7-5-1 P.L.L. CIRCUIT

A. Lock Adjustment

1. Connect the measuring instrument and set the control knobs as follows:

- Connect an oscilloscope ( 15 MHz band width) to R217.
- Connect voltmeter between R205 and ground.
- Set the channel select switch at a programmed channel (center frequency of the operating frequency range is recommended).


2. Procedure

When the circuit is operating normally, adjust coil L203. The P.L.L. will lock.

- Adjust the coil of L203, and the voltage of R205 varies between $0 \sim 6 \mathrm{~V}$, and P.L.L. should lock. - Adjust L203 for 3 V after lock.

Next, in Receive adjust L216 for maximum voltage (P-P value) on the oscilloscope and then during transmission adjust L215 to maximum. Set the channel select switch at a high edge channel, and repeat adjustment of L215, L216 several times. After that, confirm the following voltage of R205 (both transmission and receiving)about 2 V at a low edge channel and 4 V at a high edge channel, and that the voltage of R217 (both transmission and receiving) is over $2 \mathrm{Vp}-\mathrm{p}$ (over operating range of the radio). If the P.L.L. won't lock, check these voltages: $\mathrm{R}+6 \mathrm{~V}, \mathrm{~T}+6 \mathrm{~V}$, 6 V constant, and the P.L.L. LO and reference frequency oscillator for oscillation.
B. Reference Frequency Oscillator Check

1. Connect a frequency counter through a capacitor to Pin 1 of IC203.
2. Confirm frequency is: $5.120 \mathrm{MHz} \pm 250 \mathrm{~Hz}$.
C. P.L.L. LO Frequency Adjustment
3. Connection of the measuring instruments and the setting of knob.

- When adjusting the receiving frequency, connect the frequency counter to R257 through a capacitor. After power adjustment, loosely couple the set to a frequency counter with capability of more than 180 MHz (with dummy load connected), so that the transmitting frequency can be obtained.


2. Set the channel select switch at a programmed channel.

- In the receive mode, adjust L211 for the programmed receiving frequency minus 16.9 MHz .
- In the transmit mode, adjust L212 for the programmed transmitting frequency.
- Then check again, because these adjustments interact.

3. Confirmation

Check each frequency:
All frequencies should be within $\pm 500 \mathrm{~Hz}$.

## 7-5-2 TRANSMISSION

A. Power Adjustment

1. Connection of measuring instruments and setting of the knobs.

- Connect ANT to 50 ohm power meter.
- Connect a voltmeter and variable power supply to the set.

CAUTION: Applying over 12 V can damage the P.A. transistor.

- Set the channel select switch at a programmed channel.

2. Procedure

- Adjust L219 through L222 and C285, C286, C290 and C291 for maximum power output while pushing PTT switch.
- If the total current drain exceeds 1000 mA , adjust C291 to set the current at 1000 mA , and repeat above procedures.

3. Confirmation

More than 2.5 W output, less than 1000 mA current drain.
No abnormality in operation should be found if the supply voltage is varied from 7.0 V to 10.8 V .

B. Modulation Adjustment

1. Connecting the measuring instrument and the settings of the controls.

Connect a deviation meter to the ANT Connector with a directional coupler or attenuator.

Deviation meter filter shall be a High Pass Filter 50 Hz , L.P.F. 20K Hz. De-emphasis OFF.

- Set the channel select switch at a programmed channel.
- Connect an AF oscillator, with AF millivoltmeter in parallel, to the mic input.

2. Procedure

Mic input shall be 1 KHz 120 mV RMS. During transmit, adjust R171 on the main unit for 4.5 KHz deviation.

3. Modulation check

Maximum deviation: With 1 KHz 120 mV shall be $4.5 \mathrm{KHz} \pm 10 \%$.

Modulation sensitivity: Mic input voltage $12 \mathrm{mV} \pm 3 \mathrm{~dB}$ at 1 KHz . Deviation should be 3.5 KHz .

## S/N Ratio:

Connect the output of the deviation meter to a millivoltmeter. With no audio input to the mic input, take the voltmeter reading. Now apply 1 KHz 40 mV audio into the mic connector. Take the voltmeter reading. The ratio should be greater than 40 dB .
C. Spurious Transmission

Connect spectrum analyzer with appropriate attenuation. Confirm nearby random spurious signals below fundamental frequency less than -60 dB .

Measure the harmonic wave output, adjust RF-ATT until noise level just appears.

Should be less than -60 dB below the fundamental frequency.

## 7-5-3 RECEIVER

A. LO Output Adjustment

- Set the channel select switch at a programmed channel (center frequency of the frequency range is recommended). Adjust L217 and L218 for maximum output on an RF voltmeter attached to R257.
- Then set the channel select switch at a high edge frequency channel and adjust L217 and L218 with the same procedure.
- Repeat above procedures to obtain the same reading on the RF voltmeter on either channel. The output voltage should be about 200 mV .
B. RF IF DET Coil Adjustment.

1. The connecting point of measuring instrument and the setting of the knob.

- Set the channel select switch at a programmed channel.
- Connect a signal generator to the antenna connector.
- Connect an external speaker and AF millivoltmeter to the EXT SP terminal.

2. Procedure

Set RF voltage meter (minimum range) to Pin 16 on IC101 in the IF, adjust L101 through L105 maximum output while setting the input from the signal generator as low as possible. Then vary the input frequency from the signal generator $\pm 10 \mathrm{KHz}$. Check if rippling (change in output level) occurs. If ripple is over 3 dB , readjust L 105 .

Set signal generator output to -80 dBm to -90 dBm and deviation to 3.5 KHz . Set signal generator frequency to speaker output maximum. After that, adjust L107 for maximum output.
3. Confirmation

Sensitivity should be less than $-8 \mathrm{~dB} \mu(0.4 \mu \mathrm{~V})$ for 20 dB quieting.

C. 2nd LO Frequency Check

Connect a 16.9 MHz amplifier to the frequency counter, check the frequency of X 101 ( 2 nd OSC) with a loose couple. It should be: $16.900 \mathrm{MHz} \pm 400 \mathrm{~Hz}$.
D. Receiver Spurious Response

Connect a speaker and millivoltmeter to the EXT SP. Connect a 50 ohm dummy load to the antenna terminal. All receiver spurious should be supressed less than 3 dB , over entire frequency range.

## E. Receive Audio Output

Connect a millivoltmeter, oscilloscope, and a distortion meter to the EXT SP connector. To the ANT terminal connect the signal generator and set the signal generator to -80 to -90 dBm and deviation to 3.5 KHz . Turn up AF VOL control. Read the millivoltmeter when the distortion is 10\%.

## MAIN UNIT



## BOARD LAYOUT

## PLL UNIT



## BOARD LAYOUT

MATRIX UNIT

- MATRIX LAYOUT



## SECTION 9 VOLTAGE CHARTS

TRANSISTORS VOLTAGE CHART

- Measuring instrument is a $50 \mathrm{~K} \Omega / \mathrm{V}$ multimeter.

| UNIT | No. | TRANSMIT |  |  | RECEIVE |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { BASE } \\ & \text { or } \\ & \text { GATE } \end{aligned}$ | $\begin{aligned} & \text { COLLECTOR } \\ & \text { or } \\ & \text { DRAIN } \end{aligned}$ | EMITTER <br> or SOURCE | $\begin{aligned} & \text { BASE } \\ & \text { or } \end{aligned}$ | $\begin{aligned} & \text { COLLECTOR } \\ & \text { or } \\ & \text { DRAIN } \end{aligned}$ | EMITTER <br> or SOURCE |  |
| MAIN | 0101 | 0 | 0 | GND | 0.8 | 1.2 | GND | RF Amp |
| PLL | 0102 | 0 | 0 | 0 | 1.9 | 5.8 | 1.2 | RF Amp |
|  | 0103 | 0 | 0 | 0 | 0 | 6.0 | 1.4 | 1st Mixer |
|  | Q104 | 0 | 0 | GND | 0.7 | 0.9 | GND | 1st If Amp |
|  | 0105 | 0 | 0 | 0 | 1.5 | 2.8 | 0.9 | 1st If Amp |
|  | 0106 | 5.2/6.0 | 5.9/0 | 6.0 | 6.0 | 0 | 6.0 | T/R Switch Locked/Unlocked |
|  | Q107 | $0 \quad 10.6$ | 0.7/0 | GND | $0 \quad 10.6$ | 0.3/0 | GND | T/R Switch Locked/Unlocked |
|  | 0108 | 0.7 | 0 | GND | 0.3 | 6.0 | GND | T/R Switch |
|  | 0109 | 5.8 | 0 | 6.0 | 5.3 | 6.0 | 6.0 | T/R Switch |
|  | Q110 | 0 | 8.1 | 0.4 | 6.0 | 7.7 | 5.4 | T/R Switch |
|  | 0111 | 8.1 | 0 | 8.4 | 7.7 | 6.2 | 8.4 | T/R Switch |
|  | 0112 | 5.9/0 | 8.0/8.4 | 5.2\% | 0 | 8.4 | 0 | T/R Switch Locked/Unlocked |
|  | 0113 | 0 | 0.6 | 0 | 4.2 | $0 \sim 1.2$ | $3.2 \sim 3.7$ | Noise Detector SQL CLOSED/SQL OPENED |
|  | 0114 | 0.6 | 0 | GND | 0.610 | 018.0 | GND | Squelch Control Closed/Opened |
|  | Q115 | 0 | 8.0 | 0 | $0 / 8.0$ | 8.0 | $0 \quad 17.4$ | Squeich Control |
|  | 0116 | 8.0 | 0 | 8.4 | 8.0 | 017.4 | 8.4 | T/R Switch SQL Closed/Opened |
|  | 0117 | 0.6 | 8.4 | 1.7 | 0.6 | 8.4 | 1.7 | Regulator |
|  | 0118 | 7.7 | 6.0 | 8.4 | 7.7 | 6.0 | 8.4 | Regulator |
|  | 0119 | 0.6 | 6.0 | GND | 0.6 | 7.4 | GND | Regulator |
|  | 0120 | 0.6 | 0.6 | GND | 0.6 | 0.6 | GND |  |
|  | 0121 | 6.4 | 4.5 | 6.0 | 6.4 | 0 | 6.0 | Indicator Control |
|  | Q122 | 4.5 | 5.1/0 | 5.2/0 | 0 | 0 | 0 | Indicator Control Locked/Unlocked |
|  | 0123 | 4.6 | 5.2 | 5.2 | 6.0 | 1.6 | 6.0 | T/R Switch |
|  | 0125 | 3.0 | 5.2 | 2.6 | 0 | 0 | 0 | Mic Amp |
|  | 0126 | 3.2 | 5.1 | 2.6 | 0 | 0 | 0 | Mic Amp |
|  | 0127 | 5.1 | 2.0 | 5.2 | 0 | 0 | 0 | Mic Amp |
|  | 0128 | 0.3 | 2.4 | GND | 0 | 0 | GND | Limiter |
|  | 0129 | 2.4 | 5.2 | 3.1 | 0 | 0 | 0 | Low Pass Filter |
|  | O201 | 0 | 5.2 | 0.6 | 0 | 5.2 | 0.6 | VCO, FM Mod. |
|  | Q202 | 0.6 | 1.0 | GND | 0.6 | 1.0 | GND | Buffer Amp |
|  | 0203 | 1.6 | 3.4 | 1.0 | 1.6 | 3.4 | 1.0 | Buffer Amp |
|  | 0204 | 0.7 | 0.8 | GND | 0.7 | 0.8 | GND | PLL Mixer |
|  | 0205 | 1.8 | 3.4 | 1.3 | 1.8 | 3.4 | 1.3 | Level Converter |
|  | 0206 | 2.2 | 5.9 | 1.8 | 2.2 | 5.9 | 1.8 | Multiplier |
|  | 0207 | 0 | 0 | 1.2 | 1.6 | 5.8 | 1.0 | Multiplier |
|  | 0208 | 0.5 | 1.2 | GND | 0.5 | 1.0 | GND | Buffer Amp |
|  | 0209 | 1.7 | 5.6 | 1.2 | 0 | 0 | 1.0 | Multiplier |
|  | 0210 | $-0.6 \sim 0$ | 1.5 | GND | 0.7 | 0 | GND | T/R Switch |
|  | 0211 | 1.4 | 8.0 | 0.6 | 0 | 8.4 | 0 | Buffer Amp |
|  | 0212 | 0.6 | 8.4 | 0.2 | 0 | 8.4 | 0 | Driver |
|  | 0213 | 0.5 | 8.4 | GND | 0 | 8.4 | GND | Power Amp |
|  | 0214 | 5.9/5.4 | $0 / 6.0$ | 6.0 | 5.9/5.4 | $0 / 6.0$ | 6.0 | Lock Failure Mute Locked/Unlocked |

## IN TRANSMIT MODE

| UNIT | 1C No. | PIN No. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | -3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  |
| MAIN | 10101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | GND | 0 | 0 | GND | 0 |  |  |  |
| MAIN | IC102 | 0 | 0 | 0 | 0 | GND | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |
| PLL | IC201 | 6.0 | 2.0 | * | * | * | * | * | * | * | * | * | * | * | * | * | 0 | 0 | GND |  |
| PLL | 10202 | 0 | 3.0 | 1~5 | 6.0 | 6.0 | 0 | 0 | 3.0 | GND |  |  |  |  |  |  |  |  |  |  |
| PLL | IC203 | 1.4 | 2.5 | 2.5 | - | 6.0 | 3.0 | - | - | GND |  |  |  |  |  |  |  |  |  |  |

* 6.0 V or 0 V depending on the diode matrix programming.


## IN RECEIVE MODE

| UNIT | IC No. | PIN No. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  |
| MAIN | IC101 | 6.0 | 5.6 | 5.9 | 6.2 | 1.0 | 1.0 | 1.0 | 6.2 | 3.5 | 1.9 | 2.0 | GND | 5.6 | 0 | GND | 2.0 |  |  |  |
| MAIN | IC102 | 5.9 | 3.9 | 7.4 | 3.3 | GNO | 3.3 | 3.3 | 3.1 | 7.4 |  |  |  |  |  |  |  |  |  | SOL OPEN |
| PLL | 1 C 201 | 6.0 | 2.0 | * | * | * | * | * | * | * | * | * | * | * | * | * | 0 | 0 | GND |  |
| PLL | IC202 | 0 | 3.0 | 1~5 | 6.0 | 6.0 | 0 | 0 | 3.0 | and |  |  |  |  |  |  |  |  |  |  |
| PLL | IC203 | 1.4 | 2.5 | 2.5 | - | 6.0 | 3.0 | - | - | and |  |  |  |  |  |  |  |  |  |  |

* 6.0 V or 0 V depending on the diode matrix programming.



PLL UNIT



## SECTION 10 TROUBLESHOOTING

## NO POWER ON



## LOCK FAILURE





TC-9122P (BCD PROGRAMMABLE COUNTER)

MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

| SYMBOL | DESCRIPTION | RATINGS | UNIT |
| :--- | :--- | :---: | :---: |
| VDD | Supply Voltage | 10 | V |
| VIN | Input Voltage | $-0.3 \sim$ VDD +0.3 | V |
| TOPR | Operating Temperature | $-30 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| TSTR | Storage Temperature | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

## PIN CONNECTION



## BLOCK DIAGRAM


$\times 1$
$\mathbf{X 1 0}$
$\mathbf{X 1 0 0}$
$\times 1000$

MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

| SYMBOL | DESCRIPTION | RATINGS | UNIT |
| :--- | :--- | :---: | :---: |
| VCC | Supply Voltage (MAX) | 12 | VDC |
| VCC | Operating Supply Voltage | 4 to 8 | VDC |
| VIN | Input Voltage | 1.0 | VRMS |
| TOPR | Operating Temperature | $-30 \sim+70$ | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage Temperature | $-65 \sim+150$ | ${ }^{\circ} \mathrm{C}$ |

## BLOCK DIAGRAM



PIN CONNECTION


TC-5081 (PHASE COMPARATOR)
MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

| SYMBOL | DESCRIPTION | RATINGS | UNIT |
| :--- | :--- | :---: | :---: |
| VDD | Supply Voltage | 10 | V |
| VIN | Input Voltage | $-0.3 \sim$ VDD +0.3 | V |
| TOPR | Operating Temperature | $-30 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| TSTR | Storage Temperature | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

PIN CONNECTION


TC-5082 (OSCILLATOR AND 10 STAGE DIVIDER)
MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

| SYMBOL | DESCRIPTION | RATINGS | UNIT |
| :--- | :--- | :---: | :---: |
| VDD | Supply Voltage | 10 | V |
| VIN | Input Voltage | $-0.3 \sim$ VDD +0.3 | V |
| TOPR | Operating Temperature | $-30 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| TSTR | Storage Temperature | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

PIN CONNECTION


BA-526 ( 700 mW AMPLIFIER)
MAXIMUM RATINGS ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| SYMBOL | DESCRIPTION | RATINGS | UNIT |
| :--- | :--- | :---: | :---: |
| VCC | Supply Voltage | 9 | V |
| Pd | Permissible Dissipation | 700 | mW |
| TOPR | Operating Temperature | $-10 \sim+65$ | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage Temperature | $-30 \sim+125$ | ${ }^{\circ} \mathrm{C}$ |

PIN CONNECTION

[EF PARTS]

| REF NO. | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| D1 | LED | SLC-26UR |  |
| R1 | Variable Resistor | $\begin{aligned} & \text { K121B1003E5N } \\ & 1111-10 \mathrm{KA} \end{aligned}$ | (VOL) |
| R2 | Variable Resistor | $\begin{aligned} & \text { K12141014- } \\ & 5 N 1212-10 K B \end{aligned}$ | (SQL) |
| C1 | Ceramic | 470pF/50V |  |
| C2 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ |  |
| C3 | Ceramic | $15 \mathrm{pF} / 50 \mathrm{~V}$ |  |
| J1 | Connector | BNC-RM | (ANT) |
| J2 | Connector | HSJ0296-01-150 | (EXT SP) |
| J3 | Connector | HSJ0289-01-050 | (MIC) |
| P1 | Connector | XHP-13 |  |
| S1 | Rotary Swi | h SRM1026 |  |
| SP1 | Speaker | 45P30S |  |
| MC1 | Microphone | EM-80 |  |
| B1 | P.C. Board | B-415 (Contact Board) |  |

## [MAIN UNIT PARTS]

| $\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION (PART NO) |  | $\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| IC101 | IC | MC3357 | 2D |
| IC102 | IC | BA526 | 4A |
| Q101 | Transistor | 2SC2026 | 1A |
| Q102 | Transistor | 2SC2668-O | 1A |
| Q103 | FET | 2SK192-Y | 1 C |
| Q104 | Transistor | 2SC2668-O | 2C |
| Q105 | Transistor | 2SC2668-O | 2 C |
| 0106 | Transistor | 2SA1048.Y | 1E |
| Q107 | Transistor | 2SC2458-GR | 1E |
| Q108 | Transistor | 2SC2458-GR | 1E |
| Q109 | Transistor | 2SA1048.Y | 2D |
| Q110 | Transistor | 2SC2458-GR | 1 C |
| 0111 | Transistor | 2SA1048-Y | 1 C |
| Q112 | Transistor | 2SC2458-GR | 2 E |
| Q113 | Transistor | 2SA1048-Y | 3C |
| Q114 | Transistor | 2SC2458-GR | 4 C |
| Q115 | Transistor | 2SC2458-GR | 3B |
| 0116 | Transistor | 2SB562-C | 4C |
| 0117 | FET | 2SK192-Y | 1G |
| Q118 | Transistor | 2SB562-C | 1G |
| Q119 | Transistor | 2SC2458-GR | 1G |
| Q120 | Transistor | 2SC2458-GR | 1F |
| Q121 | Transistor | 2SA1048-Y | 2F |
| Q122 | Transistor | 2SA1048-Y | 2E |
| Q123 | Transistor | 2SA1048-Y | 1D |
| Q124 | Transistor | 2SC2458-GR | 4D |
| Q125 | Transistor | 2SC2458-GR | 4E |
| Q126 | Transistor | 2SC2458-GR | 4E |

[MAIN UNIT PARTS]

| REF NO. | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| Q127 | Transistor | 2SA1048-Y | 4F |
| Q128 | Transistor | 2SC2458-GR | 4F |
| Q129 | Transistor | 2SC2458-GR | 4G |
| Q130 | Transistor | 2SC2458-GR | 1G |
| Q131 | Transistor | 2SA1015-Y | 1G |
| Q132 | Transistor | 2SC2458-GR | 3F |
| D101 | Diode | 1 S 1555 | 2C |
| D102 | Diode | 1S1555 | 4D |
| D103 | Zener Diode | W WZ-081 | 3C |
| D104 | Zener Diode | de EZ-056A | 1F |
| D105 | Diode | 1S1555 | 3F |
| Fl101 | Crystal Filte | ter 16M15B2 | 1B-2C |
| F1102 | Ceramic Filter | CFU455E2 | 3E |
| $\times 101$ | Crystal 16 | 6.445MHz HC-18/T | 2E |
| L101 | Inductor | LS-160 | 2A |
| L102 | Inductor | LS-160 | 1A |
| L103 | Inductor | LS-160 | 1B |
| L104 | Inductor | LS-160 | 1B |
| L105 | Inductor | LS-221 | 1 C |
| L107 | Inductor | LS-158 | 4D |
| R101 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 2A |
| R102 | Resistor | $100 \mathrm{~K} \Omega$-J ELR10 | 1A |
| R103 | Resistor | $100 \Omega$-J ELR10 | 2B |
| R105 | Resistor | $56 \Omega$-J ELR10 | 1 C |
| R106 | Resistor | $220 \Omega$-J ELR10 | 1 C |
| R107 | Resistor | $47 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| R108 | Resistor | $1.2 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| R109 | Resistor | $330 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| R110 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| R111 | Resistor | $1.5 \mathrm{~K} \Omega$-J ELR10 | 2E |
| R112 | Resistor | $1.5 \mathrm{~K} \Omega$-J ELR10 | 3E |
| R113 | Resistor | $47 \mathrm{~K} \Omega$-J ELR10 | 3E |
| R114 | Resistor | 22K $\Omega$-J ELR10 | 3D |
| R115 | Resistor | $470 \Omega$-J R10 | 4 C |
| R116 | Resistor | $330 \mathrm{~K} \Omega$-J ELR10 | 3D |
| R117 | Resistor | $4.7 \mathrm{~K} \Omega$-J ELR10 | 4 C |
| R118 | Resistor | $5.6 \mathrm{~K} \Omega$-J ELR10 | 3D |
| R119 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 1E |
| R120 | Resistor | 2.2K $\Omega$-J ELR10 | 1E |
| R122 | Resistor | $3.3 \mathrm{~K} \Omega$-J ELR10 | 1D |
| R123 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 1E |
| R124 | Resistor | $3.3 \mathrm{~K} \Omega$-J ELR10 | 1D |
| R125 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 1D |
| R126 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 1 C |
| R127 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 1C |
| R128 | Resistor | $1.5 \mathrm{~K} \Omega$-J ELR10 | 1 C |
| R129 | Resistor | $47 \Omega$-J ELR10 | 2E |
| R130 | Resistor | $68 \mathrm{~K} \Omega$-J ELR10 | 2C |
| R131 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 2B |
| R132 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 3B |
| R134 | Resistor | $15 \mathrm{~K} \Omega$-J ELR10 | 3 C |
| R135 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 3 C |
| R136 | Resistor | $47 \mathrm{~K} \Omega$-J R10 | 4D |
| R137 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 4C |
| R138 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 3C |

[MAIN UNIT PARTS]

| REF NO. | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| R139 | Resistor | $330 \Omega$-J ELR10 | 4A |
| R140 | Resistor | $3.3 \mathrm{~K} \Omega$-J ELR10 | 1 F |
| R141 | Resistor | $4.7 \mathrm{~K} \Omega$-J ELR10 | 1G |
| R142 | Resistor | $2.2 \Omega$-J ELR10 | 1 G |
| R143 | Resistor | $2.7 \mathrm{~K} \Omega \cdot \mathrm{~J}$ ELR10 | 1F |
| R144 | Thermistor | 33D28 | 1F |
| R145 | Resistor | $470 \Omega$-J ELR10 | 1F |
| R146 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 1 E |
| R147 | Resistor | $470 \Omega$-J ELR10 | 1 D |
| R148 | Resistor | $220 \mathrm{~K} \Omega$-J ELR10 | 1 F |
| R149 | Resistor | $47 \mathrm{~K} \Omega$-J ELR10 | 2 F |
| R150 | Resistor | $330 \Omega$-J ELR10 | 1 E |
| R151 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 1 D |
| R152 | Resistor | $33 \mathrm{~K} \Omega$-J ELR10 | 4 C |
| R153 | Resistor | 100K $\Omega$-J ELR10 | 4 E |
| R154 | Resistor | $150 \mathrm{~K} \Omega$-J ELR10 | 4 D |
| R155 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 4D |
| R156 | Resistor | $68 \mathrm{~K} \Omega$ - J ELR10 | 4E |
| R157 | Resistor | $120 \mathrm{~K} \Omega$-J ELR10 | 4 E |
| R158 | Resistor | $470 \Omega$-J ELR10 | 4 E |
| R159 | Resistor | $4.7 \mathrm{~K} \Omega$-J ELR10 | 4E |
| R160 | Resistor | $3.3 \mathrm{~K} \Omega$-J ELR10 | 4E |
| R161 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R162 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R163 | Resistor | $33 \Omega$-J ELR10 | 4F |
| R164 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R165 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R166 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R167 | Resistor | $22 \mathrm{~K} \Omega$ - J ELR10 | 4F |
| R168 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 4F |
| R169 | Resistor | $82 \mathrm{~K} \Omega$ - J ELR10 | 4G |
| R170 | Resistor | 100K $\Omega$-J ELR10 | 4G |
| R171 | Resistor | WHS512A 10K $\Omega$ | 4G |
| R175 | Resistor | $3.9 \mathrm{~K} \Omega$-J R10 | 2 G |
| R176 | Resistor | $10 \mathrm{~K} \Omega$ - J R10 | 2 G |
| R177 | Trimmer | H0651A 4.7K $\Omega$ | 3 F |
| R178 | Resistor | $47 \mathrm{~K} \Omega$-J ELR10 | 3 F |
| R179 | Resistor | $33 \mathrm{~K} \Omega$ J ELR10 | 3 F |
| R180 | Resistor | $47 \mathrm{~K} \Omega$-J ELR10 | 2E |
| R181 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| R182 | Resistor | $470 \Omega$-J ELR10 | 1A |
| C101 | Ceramic | $8 \mathrm{pF} / 50 \mathrm{~V}$ | 2A |
| C102 | Ceramic | $1 \mathrm{pF} / 50 \mathrm{~V}$ | 2A |
| C103 | Ceramic | $100 \mathrm{pF} / 50 \mathrm{~V}$ | 2A |
| C104 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 1A |
| C105 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 1A |
| C106 | Ceramic | $7 \mathrm{pF} / 50 \mathrm{~V}$ | 1A |
| C107 | Ceramic | $7 \mathrm{pF} / 50 \mathrm{~V}$ | 1 B |
| C108 | Ceramic | $0.35 \mathrm{pF} / 50 \mathrm{~V}$ | 1 B |
| C109 | Ceramic | $0.35 \mathrm{pF} / 50 \mathrm{~V}$ | 1B |
| C110 | Ceramic | $5 \mathrm{pF} / 50 \mathrm{~V}$ | 1B |
| C111 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 1 C |
| C112 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 1 C |
| C114 | Ceramic | $5 \mathrm{pF} / 50 \mathrm{~V}$ | 2 B |
| C115 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2 C |
| C116 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBDO5V } \end{aligned}$ | 2 C |
| C117 | Tantalum | $\begin{aligned} & 10 \mu \mathrm{~F} / 6.3 \mathrm{~V} \\ & \text { ECSF6E } 10 \end{aligned}$ | 2E |
| C118 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \mathrm{TBDO5V} \end{aligned}$ | 2 C |

[MAIN UNIT PARTS]

| REF | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| C119 | Ceramic | $0.001 \mu / 50 \mathrm{~V}$ | 2C |
| C120 | Ceramic | 22pF/50V | 2D |
| C121 | Ceramic | $120 \mathrm{pF} / 50 \mathrm{~V}$ | 2E |
| C122 | Barrier Lay | $0.1 \mu \mathrm{~F} / 16 \mathrm{~V}$ | 3E |
| C123 | Electrolytic | $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 3E |
| C124 | Ceramic | $10 \mathrm{pF} / 50 \mathrm{~V}$ | 3 E |
| C125 | Barrier Lay | $\begin{aligned} & 0.0033 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 4 C |
| C126 | Electrolytic | $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4 C |
| C127 | Electrolytic | $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4 C |
| C128 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4 C |
| C129 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3 C |
| C130 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3 C |
| C131 | Ceramic | $33 \mathrm{pF} / 50 \mathrm{~V}$ | 3 C |
| C132 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3 C |
| C133 | Electrolytic | $4.7 \mu \mathrm{~F} / 35 \mathrm{~V}$ MS7 | 1E |
| C134 | Ceramic | 470pF/50V | 1E |
| C135 | Electrolytic | $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 3C |
| C136 | Electrolytic | $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS 7 | 4D |
| C137 | Electrolytic | $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 3 C |
| C138 | Electrolytic | $3.3 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 3D |
| C139 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 4A |
| C140 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3A |
| C141 | Electrolytic | $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4A |
| C142 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 4A |
| C143 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4B |
| C144 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 4B |
| C145 | Electrolytic | $47 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 4A |
| C146 | Electrolytic | $100 \mu$ F/10V MS9 | 4B |
| C147 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4 C |
| C148 | Electrolytic | $47 \mu \mathrm{~F} / 25 \mathrm{~V}$ MS9 | 4D |
| C149 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 1G |
| C150 | Electrolytic | $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 1 F |
| C151 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 1F |
| C152 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 1F |
| C153 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 1F |
| C154 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 1 E |
| C155 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 1D |
| C156 | Electrolytic | $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4D |
| C157 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 4E |
| C158 | Barrier Lay | $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ TBD05V | 4D |
| C159 | Ceramic | 470pF/50V | 4E |
| C160 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 4E |
| C161 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 4E |
| C162 | Electrolytic | $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4E |
| C163 | Ceramic | $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4F |
| C164 | Mylar | $0.0027 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4F |
| C165 | Mylar | $0.0047 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 4F |
| C166 | Ceramic | $120 \mathrm{pF} / 50 \mathrm{~V}$ | 4G |
| C167 | Electrolytic | $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4G |
| C168 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3D |
| C170 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 3F |
| C174 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 4E |
| C175 | Electrolytic | $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 3E |
| C176 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 4D |
| S101 | Switch | TWN-0301 | 1D |
| B101 | P.C. Board | B-391C |  |
|  | Beads Core | DL-20P2.6-3-1.2H |  |


| $\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION (PART NO) |  | BOARD LOCATION | $\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$ | DESCRIPTI | $N$ (PART NO) | BOARD LOCATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IC201 | IC | TC9122P | 2E | R205 | Resistor | $470 \Omega$-J R10 | 3F |
| IC202 | IC | TC5081P | 1F | R206 | Resistor | $100 \mathrm{~K} \Omega$-J ELR10 | 3F |
| IC203 | IC | TC5082P-GL | 1 F | R207 | Resistor | $100 \mathrm{~K} \Omega$-J ELR10 | 3E |
|  |  |  |  | R209 | Resistor | $220 \Omega$-J ELR10 | 4F |
| Q201 | FET | 2SK192-Y | 3F | R210 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 4F |
| Q202 | Transistor | 2SC2668-O | 3E | R211 | Resistor | $220 \Omega$-J ELR10 | 3E |
| 0203 | Transistor | 2SC2668-O | 3E | R212 | Resistor | $33 \mathrm{~K} \Omega$-J ELR10 | 3E |
| Q204 | Transistor | 2SC2668-O | 3C | R213 | Resistor | $120 \mathrm{~K} \Omega$-J ELR10 | 3D |
| Q205 | Transistor | 2SC945-R | 2D | R214 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 3C |
| 0206 | Transistor | 2SC2026 | 1C | R215 | Resistor | $22 \Omega$-J ELR10 | 3D |
| Q207 | Transistor | 2SC2668-O | 3G | R216 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 2D |
| Q208 | Transistor | 2SC2026 | 3G | R217 | Resistor | $2.2 \mathrm{~K} \Omega$-J R10 | 2D |
| Q209 | Transistor | 2SC2668-O | 3G | R218 | Resistor | $220 \mathrm{~K} \Omega$-J ELR10 | 2D |
| Q210 | Transistor | 2SC2458-GR | 4G | R219 | Resistor | $470 \Omega$-J ELR10 | 2D |
| Q211 | Transistor | 2SC383TM | 4F | R223 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 3C |
| Q212 | Transistor | 2SC2053 | 4D | R224 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 3B |
| 0213 | Transistor | 2SC1947 | 4B | R227 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 2C |
| 0214 | Transistor | 2SA1048-Y | 2E | R228 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 2B |
|  |  |  |  | R231 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 1C |
| D203 | Varactor Diod | Diode 1SV50 | 3E | R232 | Resistor | $22 \mathrm{~K} \Omega$-J ELR10 | 1 C |
| D204 | Diode | 1SS53 | 4E | R233 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 1 C |
| D205 | Diode | 1SS53 | 4D | R234 | Resistor | $33 \mathrm{~K} \Omega$-J ELR10 | 2 C |
| D210 | Diode | 1SS53 | 1 C | R235 | Resistor | $47 \Omega$-J ELR10 | 3C |
| D211 | Diode | 1 SS53 | 1 C | R237 | Resistor | $47 \Omega$-J ELR10 | 2G |
| D214 | Diode | $1 \mathrm{S1555}$ | 3G | R238 | Resistor | $82 \mathrm{~K} \Omega$-J ELR10 | 2G |
| D215 | Diode | 1S1209 | 4C | R239 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 3G |
| D216 | Diode | 1SS53 | 4B | R240 | Resistor | $82 \mathrm{~K} \Omega$-J ELR10 | 3G |
| D217 | Diode | $1 \mathrm{SS53}$ | 4A | R241 | Resistor | $47 \Omega$-J ELR10 | 4G |
| D218 | Diode | 1S1555 | 3F | R242 | Resistor | $10 \mathrm{~K} \Omega$-J ELR10 | 4G |
|  |  |  |  | R243 | Resistor | $150 \Omega$-J ELR10 | 4F |
| X201 | Crystal 5 | 5.12000 M Hz HC-18/T | 2F | R244 | Resistor | $470 \Omega$-J ELR10 | 4G |
| $\times 202$ | Crystal * | * HC-18/T | 2C | R245 | Resistor | $27 \Omega$-J ELR10 | 4F |
| $\times 203$ | Crystal | HC-18/T | 2B | R246 | Resistor | $47 \Omega$-J ELR10 | 4G |
|  | (*Refer to p | page 3-4) |  | R247 | Resistor | $47 \Omega$-J ELR10 | 4F |
| L201 | Inductor | LR-125 | 3D | R248 | Resistor | $47 \Omega$-J ELR10 | 4D |
| L202 | Inductor | LR-79 | 4E | R249 | Resistor | $2.2 \mathrm{~K} \Omega$-J ELR10 | 1F |
| L203 | Inductor | LB-88 | 4E | R250 | Resistor | $27 \Omega$-J ELR10 | 4D |
| L204 | Inductor | LW-20 | 3D | R252 | Resistor | $22 \Omega$-J ELR10 | 4 C |
| L205 | Inductor | 100 L4 | 1D | R253 | Resistor | $330 \Omega$-J ELR10 | 4A |
| $\perp 206$ | Inductor | LR-79 | 3D | R254 | Resistor | $15 \mathrm{~K} \Omega$-J ELR10 | 4A |
| L211 | Inductor | LB-91 | 3 C | R256 | Resistor | $100 \mathrm{~K} \Omega$-J ELR10 | 2E |
| L212 | Inductor | LB. 134 | 2B | R257 | Resistor | $2.2 \mathrm{~K} \Omega \cdot \mathrm{~J} \mathrm{R} 10$ | 1G |
| L215 | Inductor | LS-160 | 2C |  |  |  |  |
| L216 | Inductor | LS-160 | 3 C | C201 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1E |
| L217 | Inductor | LS-160 | 1G | C202 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1E |
| L218 | Inductor | LS-160 | 2G | C203 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1E |
| L219 | Inductor | LS-160 | 4G | C204 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1E |
| L220 | Inductor | LS-160 | 4G | C205 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1E |
| L221 | Inductor | LS-160 | 4F | C206 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L222 | Inductor | LS-160 | 4E | C207 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L223 | Inductor | LA-127 | 4D | C208 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L224 | Inductor | LA-126 | 4C | C209 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L225 | Inductor | LA-121 | 4B | C210 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L226 | Inductor | LA-121 | 4B | C211 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1D |
| L227 | Inductor | LR-78 | 4A | C212 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2D |
| L228 | Inductor | LA-136 | 4A | C213 | Tantalum | $10 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ | 3F |
| L229 | Inductor | LA-135 | 4A | C214 | Barrier Lay | $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3F |
| L230 | Inductor | LA-143 | 4A |  |  | TBD05V |  |
| L231 | Inductor | LR-77 | 3E | C215 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ MS7 | 2 F |
| L232 | Inductor | LR-118 | 3D | C217 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 3E |
|  |  |  |  | C218 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 3D |
| R202 | Resistor | $47 \mathrm{~K} \Omega$-J ELR 10 | 2 F | C220 | Ceramic | $30 \mathrm{pF} / 50 \mathrm{~V}$ | 4 E |
| R203 | Resistor | $12 \mathrm{~K} \Omega$-J ELR10 | 2E | C221 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 4D |
| R204 | Resistor | $1 \mathrm{~K} \Omega$-J ELR10 | 3F | C222 | Ceramic | $470 \mathrm{pF} / 50 \mathrm{~V}$ | 4D |

[PLL UNIT PARTS]

| $\begin{aligned} & \text { REF } \end{aligned}$ | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| C223 | Ceramic | 470pF/50V | 4F |
| C224 | Ceramic | 470pF/50V | 4F |
| C225 | Ceramic | $10 \mathrm{pF} / 50 \mathrm{~V}$ UJ | 3F |
| C226 | Ceramic | $1 \mathrm{pF} / 50 \mathrm{~V}$ | 3F |
| C227 | Ceramic | $33 \mathrm{pF} / 50 \mathrm{~V}$ UJ | 3F |
| C228 | Ceramic | $3 \mathrm{pF} / 50 \mathrm{~V}$ | 3F |
| C229 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3D |
| C230 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3D |
| C231 | Ceramic | 8pF/50V | 3D |
| C232 | Ceramic | 22pF/50V | 2C |
| C233 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 3D |
| C235 | Ceramic | 22pF/50V | 1D |
| C236 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2D |
| C 237 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 2D |
| C238 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2D |
| C239 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ MS9 | 1F |
| C240 | Barrier Lay | $\begin{aligned} & 0.0047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & \text { TBD05V } \end{aligned}$ | 3E |
| C241 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1G |
| C242 | Ceramic | 15pF/50V | 2F |
| C243 | Ceramic | $33 \mathrm{pF} / 50 \mathrm{~V}$ | 2F |
| C244 | Ceramic | $33 \mathrm{pF} / 50 \mathrm{~V}$ | 1G |
| C246 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3B |
| C247 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3B |
| C251 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 1 C |
| C252 | Ceramic | 56pF/50V | 1 C |
| C253 | Ceramic | 22pF/50V | 1C |
| C254 | Ceramic | 47pF/50V | 2C |
| C255 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2C |
| C256 | Ceramic | $39 \mathrm{pF} / 50 \mathrm{~V}$ | 3C |
| C257 | Ceramic | $5 \mathrm{pF} / 50 \mathrm{~V}$ | 2C |
| C258 | Ceramic | $5 \mathrm{pF} / 50 \mathrm{~V}$ | 3C |
| C261 | Ceramic | 47pF/50V | 1G |
| C262 | Ceramic | 10pF/50V | 2G |
| C263 | Ceramic | 0.5pF/50V | 2G |
| C264 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2G |
| C265 | Ceramic | 10pF/50V | 2G |
| C266 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3G |
| C267 | Ceramic | 470pF/50V | 2F |
| C268 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3G |
| C269 | Electrolytic | $4.7 \mu \mathrm{~F} / 25 \mathrm{~V}$ MS7 | 3G |
| C270 | Ceramic | 7pF/50V | 4G |
| C271 | Ceramic | $0.35 \mathrm{pF} / 50 \mathrm{~V}$ | 4G |
| C272 | Ceramic | 7pF/50V | 4G |
| C273 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 3G |
| C274 | Ceramic | 470pF/50V | 4G |
| C275 | Ceramic | 47pF/50V | 4G |
| C276 | Ceramic | 470pF/50V | 4F |
| C277 | Ceramic | $6 \mathrm{pF} / 50 \mathrm{~V}$ | 4F |
| C278 | Ceramic | $0.5 \mathrm{pF} / 50 \mathrm{~V}$ | 4E |
| C279 | Ceramic | $6 \mathrm{pF} / 50 \mathrm{~V}$ | 4E |
| C280 | Ceramic | 470pF/50V | 4F |
| C281 | Ceramic | 470pF/50V | 4E |
| C282 | Ceramic | 47pF/50V | 4E |
| C283 | Ceramic | 470pF/50V | 4E |
| C284 | Ceramic | 470pF/50V | 4D |
| C285 | Trimmer | 20pF <br> MCV50D1H200 | 4D |
| C286 | Trimmer | 10pF <br> MCV50D1H100 | 4C |
| C287 | Ceramic | 27pF/50V | 4C |
| C288 | Electrolytic | $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4C |

[PLL UNIT PARTS]

| $\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION (PART NO) |  | BOARD LOCATION |
| :---: | :---: | :---: | :---: |
| C289 | Ceramic | 470pF/50V | 4C |
| C290 | Trimmer | 10pF <br> MCV50D1H100 | 4B |
| C291 | Trimmer | $\begin{aligned} & 20 \mathrm{pF} \\ & \text { MCV50D1H200 } \end{aligned}$ | 4B |
| C292 | Ceramic | 470pF/50V | 4A |
| C293 | Ceramic | 10pF/50V | 4A |
| C294 | Ceramic | 100pF/50V | 4A |
| C295 | Ceramic | $33 \mathrm{pF} / 50 \mathrm{~V}$ | 4B |
| C296 | Ceramic | 100pF/50V | 4A |
| C297 | Ceramic | $2 \mathrm{pF} / 50 \mathrm{~V}$ | 4A |
| C298 | Ceramic | 27pF/50V | 4A |
| C300 | Ceramic | 470pF/50V | 4A |
| C302 | Electrolytic | $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ MS7 | 4C |
| C303 | Ceramic | $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ | 2E |
| J201 | Connector | SB7P-HVQ-22 | 1D |
| J202 | Connector | SB5P-HVQ-22 | 1E |
| B201 | P.C. Board | B-390D |  |
|  | Beads Core | DL-20P2.6-3-1.2H |  |

[MATRIX UNIT PARTS]

| $\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION (PART |  | NO) | BOARD LOCATION |
| :---: | :---: | :---: | :---: | :---: |
| R401 | Resistor | $100 \mathrm{~K} \Omega$ - J | R10 | 1E |
| R402 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 1E |
| R403 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 1D |
| R404 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 3E |
| R405 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 3B |
| R406 | Resistor | $2.2 \mathrm{~K} \Omega$ - | R10 | 1D |
| R407 | Resistor | $2.2 \mathrm{~K} \Omega$ - | R10 | 3B |
| R408 | Resistor | $2.2 \mathrm{~K} \Omega$-J | R10 | 3B |
| R409 | Resistor | $2.2 \mathrm{~K} \Omega$-J | R10 | 3 C |
| R410 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 3C |
| R411 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 2B |
| R412 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 1B |
| R414 | Resistor | $2.2 \mathrm{~K} \Omega$ - J | R10 | 3B |
| J401 | Connector | B13B-XH |  | 1 E |
| P401 | Connector | F7P-HVQ-K |  | 1 C |
| P402 | Connector | F5P-HVO-K |  | 1B |
| B401 | P.C. Board | B-638 |  |  |

## DIAGRAM <br> SCHEMATIC




## AC BATTERY CHARGER

## CM-30

MAINTENANCE MANUAL

## SPECIFICATIONS

Applicable Battery Packs

Number of Semiconductors

Power Supply Requirement

Charging Current

Usable Temperature

Dimensions
Weight

IC-CM2, IC-CM3, IC-CM5
IC-CM4 (applies only with Nickel-Cadmium batteries inserted)
Transistor 9
IC 2
Diode 12
100/117/230V AC 50/60Hz
(Input voltage can be selected by changing internal wiring.)
600 mA for IC-CM2 and IC-CM5
25 mA for IC-CM3
45 mA for IC-CM4 (Nickel-Cadmium inserted)
$0^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$ for IC-CM3 and IC-CM4
$+10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$ for IC-CM2 and IC-CM5
$72 \mathrm{~mm}(\mathrm{H}) \times 172 \mathrm{~mm}(\mathrm{~W}) \times 104 \mathrm{~mm}(\mathrm{D})$
Approx. 1.0 kg

## DESCRIPTION OF CONTROLS



1. Power Switch

When the charger is connected to a wall outlet, it turns the charger on.
2. Power Lamp

Indicates power is on.
3. Charge lamp

Indicates charging is underway, goes out then charging of rapid-charge packs is completed.
4. Insertion slot for battery packs.
5. Charging terminal

Correspond to the terminals on the bottom of the battery packs.
6. Microswitches.

Since the current and capacity for each battery pack is different, these microswitches select the proper factors for each one.

1. Remove the four screws which have retained the cover of the unit as shown in the figure.

2. Remove the cover from the chassis with taking care to donot make damage to the internal wirings as shown. When you wish to remove the PC Board, remove the four screws at each end of the board as shown in the figure.


This charger provides proper charging current for various battery packs which is selected by charging current selector on the bottom of the battery pack.
Also a constant charging current is provided by controlling conducting phase angle of the SCR in the circuit. It keeps the current constant even if various battery packs which have different output voltage, has been used.

## 1. CONDUCTING ANGLE CONTROL CIRCUIT

A gate pulse is used to control the thyristor (SCR) in the circuit. This gate pulse is a part of a full-wave rectified wave and its phase angle is controlled by a saw tooth pulse which is synchronized to the full-wave rectified wave.

The pulse falltime of the saw tooth pulse is controlled by an actual charging current, and it decides the phase angle of the gate pulse of between 40 degrees and 160 degrees.
The saw tooth pulse generate circuit consists of Q2, Q5 and C9.
A full-wave rectified voltage is applied to the base of $\mathbf{O 2}$ through R4 and turns $\mathbf{Q 2}$ on at near its base line ( $D$ portion in the figure), and charges C 9 to +9 V which from regulator Q1. When the rectified voltage exceeds +9 V (out of D portion), O 2 is turned off and the charged voltage of C 9 is discharged through O5, and a saw tooth wave is generated across C9. This saw tooth pulse is fed to Pin 12 of IC2.


When the pulse voltage decreases less than gate's threshold voltage, Pin 11 of IC2 puts out H level voltage. This turns Q 4 and Q 3 on, and a portion of full-wave rectified voltage is fed to the gate of D6 SCR through 03, and D6 is turned on.

When the SCR has been turned on, it holds this condition until the power source voltage becomes zero or its cathode is biased by reverse voltage. Thus, when the full-wave rectified voltage becomes less than +9 V ( D portion in the figure), the SCR will be turned off.

Rated charging current is decided by R37~R42. R37~ R42 are selected by S3 $\sim$ S5 which are turned on or off by a battery pack's charging current selector, and are in series with the charging battery.

A voltage across R37, R38 or R39 ~ R42 is integrated by R14 and C16, then fed to the base of Q6. 05 and 06 compose a differential amplifier. A reference voltage which is divided from +9 V by R11 and R12, is applied to the base of 05 , thus the collector current of 05 is varied by the base voltage of Q6, and controls discharging time of $\mathrm{C9}$.

For example, when the charging current increases more than the specified charging current, Q 6 collector current increases, 05 collector current decreases, C9 discharging time becomes longer, the phase angle of D6 gate pulse delays (the pulse width becomes narrower), and the charging current decreases.

When the charging current decreases less than the specified charging current, the circuit functions the opposite way and keeps the charging current constant.

## 2. LOGIC CIRCUIT

The logic circuit is controlled by the charging current select switches S3~S5, and the charging detector Q10.
When charging IC-CM2 or IC-CM5, S5 is turned on by the charging current selector on the battery pack.

The charging current ( 600 mA ) flows through R39 ~ R42, and a voltage across these resistors is applied to the base of Q10 and turns it on. Thus, a gate input Pin 1 and 2 of IC2 becomes $L$ level, its output Pin 3 H level. This puts out H level at Pin 4 of IC1, output of a flip-flop consisting of a gate of IC1 and a gate of IC2. Also Pin 10 of IC1 puts out H level and Pin 10 of IC2 L level.

This grounds the emitter of Q4 through R10 and Pin 10 of IC2, and Q 3 is turned on during Pin 11 of IC2 is H level and charges the battery pack.

When the battery pack is fully charged, the built-in thermal switch in the pack is turned off and cuts off the $\ominus$ charging terminal. Thus, $\mathbf{H}$ level is applied to Pin 1 and 2 of IC2, Pin 5 of IC1 and the flip-flop is turned to reverse condition and Pin 4 of IC1 becomes L level. This puts out H level at Pin 10 of IC2 and turns 04 off, and any charging current does not flow even if the thermal switch has been turned on when the battery pack is cooled.

When the battery pack is removed from the charger, S5 is turned off and Pin 5 of IC1 is grounded through S5. This resets the flip-flop for another charging.

When charging IC-CM3, S3 is turned on and the charging current ( 25 mA ) flows through R37.
Pin 5 and 8 of IC1 are grounded through S5, Pin 10 of IC2 is L level and Q 4 emitter is grounded through R10. Thus, the charging current flows until the battery pack is removed from the charger.

When charging IC-CM4 inserted nickel-cadmium batteries S4 is turned on and the charging current ( 45 mA ) flows through R38. The logic circuit works the same as charging IC-CM3.

SPECIFICATIONS OF BATTERY PACKS

|  | IC-CM2 | IC-CM3 | IC-CM4 | IC-CM4 | IC-CM5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cells [Capacity] | $\begin{gathered} \mathrm{N}-425 \mathrm{AR} \\ (\times 6) \\ {[400 \mathrm{mAH}]} \end{gathered}$ | $\begin{gathered} \mathrm{N}-250 \mathrm{~A} A \\ (\times 7) \\ {[250 \mathrm{mAH}]} \end{gathered}$ | AA Size Alkaline ( $\times 6$ ) | AA Size NickelCadmium (X6) | $\begin{gathered} \text { N-425ARR } \\ (\times 9) \\ {[400 \mathrm{mAH}]} \end{gathered}$ |
| Voltage | 7.2 V | 8.4V | 9.0 V | 7.2 V | 10.8 V |
| RF Output | 1.0W | 1.5W | 1.5 W | 1.0W | 2.3 W |
| Charging | Rapid | Normal |  | Normal | Rapid |
| Charging Time | $1 \sim 1.5 \mathrm{H}$ | 15H |  | 15H | $1 \sim 1.5 \mathrm{H}$ |
| Suitable Charger | CM-30 | $\begin{aligned} & C M-30 \\ & C M-25 U \\ & \text { IC-CM1 } \end{aligned}$ |  | CM-30 | CM-30 |
| Charging Current | 600 mA | 25 mA |  | 45 mA | 600 mA |
| Ambient Temperature | $+10^{\circ} \sim+40^{\circ} \mathrm{C}$ | $0^{\circ} \sim+45^{\circ} \mathrm{C}$ | , | $0^{\circ} \sim+45^{\circ} \mathrm{C}$ | $+10^{\circ} \sim+40^{\circ} \mathrm{C}$ |
| Overcharge Protect | $\bigcirc$ | $\times$ |  | $\times$ | $\bigcirc$ |
| Current <br> Selector | $\square$ |  |  | -n-m | 0 |
| Height | 39m/m | $39 \mathrm{~m} / \mathrm{m}$ | 49m/m | $49 \mathrm{~m} / \mathrm{m}$ | $60 \mathrm{~m} / \mathrm{m}$ |
| Battery Replace | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ |




## VOLTAGE CHART

TRANSISTOR
Note: Measuring instrument is a $50 \mathrm{~K} \Omega / \mathrm{V}$ multimeter.

| BATTERY | No connection |  |  | IC-CM3 (25mA) |  |  | IC-CM4 (45mA) |  |  | IC-CM2/CM5 (600mA) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tr. NO. | BASE | COLLE- <br> CTOR | EMI <br> TTER | BASE | COLLE- <br> CTOR | EMI <br> TTER | BASE | COLLE- <br> CTOR | EMI <br> TTER | BASE | COLLE- <br> CTOR | EMI <br> TTER |
| Q 1 | 9.8 | 18.0 | 9.2 | 9.8 | 14.5 | 9.1 | 9.8 | 14.5 | 9.2 | 9.8 | $13.0 / 20.0$ | 9.2 |
| Q 2 | 9.4 | 2.9 | 9.2 | 9.4 | 6.2 | 9.1 | 9.4 | 6.2 | 9.2 | 9.4 | $5.2 / 4.4$ | 9.2 |
| Q 3 | 16.5 | 15.0 | 17.0 | 16.0 | 2.7 | 3.2 | 16.0 | 2.4 | 2.6 | 14.0 | $5.0 / 7.8$ | 14.0 |
| Q 4 | 9.1 | 16.5 | 8.5 | 1.75 | 16.0 | 1.65 | 1.6 | 16.0 | 1.7 | $3.6 / 4.8$ | 14.0 | $3.3 / 4.4$ |
| Q 5 | 0.9 | 2.4 | 0.32 | 1.0 | 6.0 | 0.45 | 1.0 | 6.2 | 0.45 | 1.0 | $4.9 / 3.9$ | $0.44 / 0.42$ |
| Q 6 | 0.7 | 9.2 | 0.32 | 1.05 | 9.1 | 0.45 | 1.0 | 9.2 | 0.45 | 1.0 | 9.1 | $0.44 / 0.42$ |
| Q10 | 0 | 7.6 | GND | 0.75 | 0.1 | GND | 0.74 | 0.1 | GND | 0.75 | 0.1 | GND |
| Q11 | 0 | 9.0 | GND | 0.65 | 0.1 | GND | 0.65 | 0.1 | GND | 0 | 8.9 | GND |
| Q12 | 0 | 9.0 | GND | 0 | 9.0 | GND | 0 | 9.0 | GND | 0.65 | 0.1 | GND |

## IC

| $\begin{gathered} \text { IC } \\ \text { NO. } \end{gathered}$ | Condition | PIN NO. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| IC1 | - | 9.0 | 9.0 | 0 | 9.0 | 0 | 0 | GND | 0 | 0 | 9.0 | 0 | 9.0 | 9.0 | 9.0 |
|  | 25 mA | 0 | 0 | 9.0 | 9.0 | 0 | 0 | GND | 0 | 9.0 | 9.0 | 9.0 | 0 | 9.0 | 9.0 |
|  | 45 mA | 0 | 0 | 9.0 | 9.0 | 0 | 0 | GND | 0 | 9.0 | 9.0 | 9.0 | 0 | 9.0 | 9.0 |
|  | 600 mA | 9.0 | 9.0 | 0 | 9.0 | 9.0 | 0 | GND | 9.0 | 0 | 9.0 | 9.0 | 9.0 | 0 | 9.0 |
|  | CUT | 9.0 | 9.0 | 0 | 0 | 9.0 | 9.0 | GND | 9.0 | 0 | 9.0 | 9.0 | 9.0 | 0 | 9.0 |
| IC2 | - | 0 | 0 | 9.0 | 0 | 9.0 | 9.0 | GND | 9.0 | 9.0 | 0 | 9.0 | 2.5 | 0 | 9.0 |
|  | 25 mA | 0 | 0 | 9.0 | 0 | 9.0 | 9.0 | GND | 9.0 | 9.0 | 0 | *1.0 | *6.0 | 9.0 | 9.0 |
|  | 45 mA | 0 | 0 | 9.0 | 0 | 9.0 | 9.0 | GND | 9.0 | 9.0 | 0 | ${ }^{*} 1.0$ | *5.0 | 9.0 | 9.0 |
|  | 600 mA | 0.8 | 0.8 | 9.0 | 0 | 9.0 | 9.0 | GND | 9.0 | 9.0 | 0 | *3.5 | *5.0 | 9.0 | 9.0 |
|  | CUT | 4.3 | 4.3 | 0 | 9.0 | 0 | 0 | GND | 0 | 9.0 | 9.0 | 6.0 | 4.2 | 9.0 | 9.0 |

*Will be varied by battery voltage and/or charging conditions.

## PARTS LIST

| REF. NO. | DESCRIPTION |  |
| :---: | :---: | :---: |
| IC1 | IC $\mu$ PD401 |  |
| IC2 | IC $\mu$ PD401 |  |
| Q1 | Transistor | 2SC1815-O, Y, GL, BL |
| Q2 | Transistor | 2SA1015-Y |
| Q3 | Transistor | 2SA1015-Y |
| Q4 | Transistor | 2SC1740-Q, R, S, E |
| Q5 | Transistor | 2SC945-P |
| Q6 | Transistor | 2SC945-P |
| Q10 | Transistor | 2SC1740-Q, R, S, E |
| Q11 | Transistor | 2SC1740-Q, R, S, E |
| Q12 | Transistor | 2SC1740-Q, R, S, E |
| D1 | Zener | XZ-096 |
| D2 | Diode | 1S1555 |
| D3 | Diode | GP-08B |
| D4 | Diode | GP-08B |
| D5 | Diode | 1S1555 |
| D6 | SCR | 2P1M |
| D9 | Diode | GP-08B |
| D10 | Diode | 1S1555 |
| D11 | Diode | 1S1555 |
| D12 | LED | LD-002R |
| D14 | Diode | 1S1555 |
| L1 | Choke | LW-16 |
| L2 | Choke | LW-9 |
| L3 | Choke | LW-9 |
| R1 | Resistor | 820 ELR25 |
| R2 | Resistor | 220 ELR25 |
| R3 | Resistor | 33 ELR25 |
| R4 | Resistor | 22K ELR25 |
| R5 | Resistor | 2.2K ELR25 |
| R6 | Resistor | 3.3K ELR25 |
| R7 | Resistor | 1K R25 |
| R8 | Resistor | 10K R25 |
| R9 | 'Resistor | 1K ELR25 |
| R10 | Resistor | 47K R25 |
| R11 | Resistor | 22K ELR25 |
| R12 | Resistor | 2.7K ELR25 |
| R13 | Resistor | 1.5K ELR25 |
| R14 | Resistor | 22K ELR25 |
| R15 | Resistor | 15K ELR25 |
| R16 | Resistor | 680 ELR25 |
| R17 | Resistor | 820 ELR25 |
| R23 | Resistor | 10K ELR25 |
| R24 | Resistor | 100K ELR25 |
| R25 | Resistor | 10K ELR25 |
| R26 | Resistor | 100K ELR25 |
| R27 | Resistor | 10K ELR25 |
| R28 | Resistor | 100K ELR25 |


| REF. NO. | DESCRIPTION |  |  |
| :---: | :---: | :---: | :---: |
| R29 | Resistor | 100 K | R25 |
| R30 | Resistor | 5.6 K | R25 |
| R31 | Resistor | 470K | R25 |
| R32 | Resistor | 22K | R25 |
| R33 | Resistor | 680 | R25 |
| R34 | Resistor | 680 | R25 |
| R35 | Resistor | 10K | ELR25 |
| R36 | Resistor | 10K | ELR25 |
| R37 | Resistor | 27 | R25 |
| R38 | Resistor | 15 | R25 |
| R39 | Resistor | 1 | R25 |
| R40 | Resistor | 1 | R25 |
| R41 | Resistor | 1 | R25 |
| R42 | Resistor | 1 | R25 |
| Cl | Electrolytic | $47 \mu \mathrm{~F} / 25 \mathrm{~V}$ |  |
| C2 | Electrolytic | $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ |  |
| C3 | Ceramic | 470P |  |
| C4 | Electrolytic | $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ |  |
| C5 | Ceramic | 0.0047 |  |
| C6 | Ceramic | 0.0047 |  |
| C7 | Ceramic | 0.0047 |  |
| C8 | Ceramic | 470P |  |
| C9 | Barrier Lay | 0.047 |  |
| C10 | Ceramic | 470P |  |
| C11 | Ceramic | 470P |  |
| C13 | Ceramic | 470P |  |
| C14 | Ceramic | 470P |  |
| C15 | Ceramic | 470P |  |
| C16 | Electrolytic | $47 \mu \mathrm{~F}$ | 10 V |
| C19 | Electrolytic | $22 \mu \quad 16 \mathrm{~V}$ | 16 V |
| C20 | Ceramic | 470P |  |
| C21 | Ceramic | 470P |  |
| C22 | Electrolytic | $2.2 \mu$ | 50 V |
| S1 | Switch | SDJ2S |  |
| S3 | Switch | D2MS |  |
| S4 | Switch | D2MS |  |
| S5 | Switch | D2MS |  |
|  | PC Board | B-439B |  |
|  | HEATSINK | 41912 |  |
|  | Fuse Holder | S-N5051 |  |
|  | Fuse | 2A |  |
| T1 | Transformer | TP-25 |  |
|  | Power Cord | OPC-013 |  |

Count on us!

