o ICOM

SERVICE MANUAL

TRANSCEIVER

Icom Inc.

TABLE OF CONTENTS

SECTION	1 S	PECIFICATIONS	1 - 1	
SECTION	2 0	PERATING CONTROLS	2 - 1 ~	2
SECTION	3 C	IRCUIT DESCRIPTION	3 - 1 ~	4
	3 - 1	RECEIVER CIRCUITS	3 - 1	
	3 - 2	TRANSMITTER CIRCUITS	3 - 2	
	3 - 3	PLL CIRCUITS	3 - 2 ~	3
	3 - 4	OTHER CIRCUITRY	3 - 3 ~	4
SECTION	4 B	LOCK DIAGRAM	4 - 1	
SECTION	5 II	NSIDE VIEWS	5 - 1	
SECTION	6 N	IECHANICAL PARTS AND DISASSEMBLY	6 - 1 ~	5
	6 - 1	DISASSEMBLY OF THE CASES	6 - 1	
	6 - 2	DISASSEMBLY OF UNITS	6 - 2 ~	3
	6 - 3	PTT SPRING ASSEMBLY	6 - 3	
	6 - 4	TOP PANEL CONSTRUCTION	6 - 4	
	6 - 5	UNIT BOTTOM ASSEMBLY	6 - 5	
SECTION	7 N	AINTENANCE AND ADJUSTMENT	7 - 1 ~	9
	7 - 1	MEASURING INSTRUMENTS REQUIRED FOR		
		ADJUSTMENT	7 - 1	
	7 - 2	PRELIMINARY CHECKS	7 - 2	
	7 - 3	PREPARATION AND PROCEDURE BEFORE		
		SERVICING	7 - 2 ~	3
	7 - 4	НОШ ТО СНЕСК	7 - 3 ~	5
	7 - 5	BASIC ALIGNMENT PROCEDURE	7 - 6 ~	9
SECTION	8 B	OARD LAYOUT	8 - 1 ~	3
SECTION	9 V	OLTAGE CHARTS	9 - 1 ~	4
SECTION	10 T	ROUBLESHOOTING	10 - 1 ~	4
SECTION	11 10	C SPECIFICATIONS	11 - 1 ~	3
SECTION	12 P.	ARTS LIST	12 - 1 ~	4

GENERAL

Number of Semiconductors	Transistors FET	43 3					
	IC	5					
	Diodes	15 (not i	ncluding di	odes on the matrix board)			
Number of Channels	grammable independently for each channel) Operation; Simplex, Semi-duplex						
Channel Spacing	25KHz (5KHz	increments f	frequencies	are programmable)			
Frequency Stability	0.001 Percent						
Usable Temperature	-20 Degrees C	to 60 Degre	es C				
	(-4 Degrees F	to 140 Degr	ees F)				
Antenna Impedance	50 ohms unbal	anced					
Power Supply Requirement	DC 8.4V; with	attendant p	ower pack	IC-CM3, DC 7 to 12V negative			
Current Drain at 8.4V	ground is accep Transmitting	otable					
	At 2.5 watts Receiving	s output	Approx.	700mA			
	At max aud	io output	Approx.	130mA			
	Squelched		Approx.	25mA			
Dimensions	116.5mm(H) x Attendant pow	65mm(W) × er pack, IC-0	< 45mm (D) CM3: 49mr	without power pack m(H) x 65mm(W) x 35mm(D)			
Weight	510g including	power pack	, IC-CM3, a	and flexible antenna			
RECEIVER							
Frequency Range	Specified 2MH 150.005 ~ 155.005 ~ 160.005 ~ 160.005 ~ 165.000 ~ 165.000 ~ 165.000 ~ 165.000 ~ 165.000 ~ 1000 ~ 10000 ~ 100000 ~ 1000000000	z segment (5 155.000MHz 160.000MHz 165.000MHz 170.000MHz	MHz with z z z	reduced specification) within;			
Receiving System	Double-convers	sion superhe	terodyne				
Modulation Acceptance	16F ₃ ±7.5K	Hz (F3E 16	ко)				
Intermediate Frequency	1st: 16.9M	lHz					
	2nd: 455Kl	Hz					
Sensitivity	Less than 0.5μ	V for 20dB r	noise quieti	ng			
	Less than 0.4μ	V for 12dB S	SINAD				
Squelch Sensitivity	Less than 0.4μ	V					
Spurious Response Rejection Ratio	More than 60d	В					
Selectivity	More than 65d	B at adjacen [.]	t channel				
Intermodulation Rejection Ratio	More than 60d	В					
Audio Output Power	More than 300	mW at 10% o	distortion				
Audio Output Impedance	8 ohms						
TRANSMITTER							
Frequency Range	Specified 2MH	z segment (5	MHz with I	reduced specification)			
Output Power	2.5 Watts (4 wa	atts with 10.	.8V battery	pack IC-CM5)			
Emission Mode	16F ₃ (F3E	16K0)					
Modulation System	Variable reacta	nce frequenc	cy modulat	ion			
Max. Frequency Deviation	±5KHz						
Spurious Emission	More than 60d	B below carr	ier				
Microphone	Built-in electret	t condenser i	microphone	e			

Optional speaker-microphone (IC-CM9) can be used

TOP PANEL

FRONT PANEL

(1) ANTENNA CONNECTOR

Connect the supplied flexible antenna. An external antenna can be used, using a BNC connector.

② TRANSMIT/BATTERY INDICATOR

Illuminates in the transmit mode. Also indicates the battery condition; during transmission. The voltage of Nickel-Cadmium batteries drops rapidly just before they are exhausted, so when this indicator goes out, be sure to immediately stop using it, and charge the batteries again.

③ CHANNEL SELECT SWITCH

Selects one of the programmed channels.

④ SQUELCH CONTROL

Sets the squelch threshold level. To turn OFF the squelch function, rotate this control completely counterclockwise. To set the threshold level higher, rotate the control clockwise.

5 VOLUME CONTROL and POWER SWITCH

When the control is turned completely counterclockwise, the power is OFF. By turning the control clockwise beyond the "click", the unit is turned ON and the audio level increases by further rotating it clockwise.

6 EXTERNAL SPEAKER JACK

When an external speaker (or an earphone) is used, connect it to this jack. Use a speaker with an impedance of 8 ohms. When the external speaker is connected the built-in speaker does not function.

7 EXTERNAL MIC JACK

When an external microphone is used, connect it to this jack. See the schematic for the proper hookup. When the external microphone is connected the built-in microphone does not function. The IC-CM9 optional speaker-microphone can also be used.

8 PUSH TO TALK (PTT) SWITCH

For transmission, press this switch and talk into the microphone with normal voice. The internal microphone is of the electret-condenser type and provides good pickup for all voice levels.

9 CHARGER CONNECTOR

Connects to the output plug of the wall charger CM-25U/E or other 12V DC power source.

10 BATTERY CHARGE INDICATOR

Lights during battery charging.

SECTION 3 CIRCUIT DESCRIPTION

3-1 RECEIVER CIRCUITS

3-1-1 ANTENNA SWITCHING CIRCUIT

Signals from the antenna connector are fed to the antenna switching circuit through Chebyshev low-pass filter consisting of L229, L230, C295, C297 and C298 in the PLL board.

The antenna switching circuit employs a quater wave switching circuit.

In the receive mode, switching diodes, D216 and D217 are turned OFF, and they make isolation against the transmitter circuit and matching circuit, and the incoming signals are fed to the RF amplifier.

3-1-2 RF AMPLIFIER AND FIRST MIXER

The signals from the switching circuit are fed to the cascode amplifier Q101 and Q102. The amplified signals are fed to the gate of the first mixer Q103 through the band-pass filter $L102 \sim L104$, which reduces interference and intermodulation from out of the band signals.

To the source of Q103, a 140MHz signal^{*} is supplied from the PLL circuit to convert the RF signals into 16.9MHz first IF signals. (*This frequency differs depending on the version, and it can be calculated by formula; "Receive frequency" – 16.9MHz.)

The first IF signals are taken from the drain of Q103 and fed to the IF circuit.

3-1-3 IF CIRCUIT

The first IF signals from Q103 are fed to the matched pair crystal filter F1101, then IF amplifiers Q104 and Q105.

The amplified signals are fed to IC101. IC101 is composed of the second local oscillator, second mixer, limiter amplifier, quadrature detector and active filter circuits.

The second local oscillator oscillates 16.445MHz with X101, and is fed to the second mixer with the first IF signals to convert into 455KHz second IF signals. The second IF signals are put out from Pin 3, and fed to external ceramic filter F1102 which has excellent selectivity, then fed to IC101 (Pin 5) again to amplify and detect.

The detected AF signals are put out from Pin 9.

3-1-4 AF AND SQUELCH CIRCUITS

The detected AF signals are put 6dB/Octave de-emphasis by integral circuit consisting of R117 and C126, and fed to AF power amplifier IC102 through the VOLUME control R1, to obtain enough power to drive the speaker.

Noise components put out from Pin 9 of IC101 are fed to IC101 (Pin 10) again through the SQUELCH control R2, which controls the squelch threshold level, filtered about 20KHz signal (noise) and put out from Pin 11.

This signal (noise) is rectified by Q113, integrated by R135, R136 and C136, and turns Q114 ON and turns OFF the regulator for AF power amplifier consisting of D103, Q115 and Q116.

This reduces the current drain of the set, in the standby condition. When a signal is received, noise is suppressed by the signal and turns Q114 OFF and the regulator is turned ON and supplies regulated voltage to the AF power amplifier, and incoming signal can be heard from the speaker.

In the transmit mode, a voltage is applied to Q114 and turns it ON, and turns the regulator OFF the same as in the standby condition.

3-2 TRANSMITTER CIRCUITS

3-2-1 MIC AMPLIFIER CIRCUIT

Audio signals from the microphone are fed to the limiter amplifier, consisting of Q125 \sim Q128, which has 6dB/Octave response between 300Hz and 3KHz.

The output of the limiter amplifier is similar to rectangular waves and includes harmonics. These harmonics are eliminated by the low-pass filter Q129, which cuts 3KHz or higher. Filtered signals are fed to the VCO in the PLL board to make modulation.

3-2-2 MULTIPLIER AND DRIVER CIRCUITS

The VCO oscillates a half of a transmitting frequency, thus the multiplier Q208 and Q209, multiplies it two times to obtain 156MHz^{*} transmitting frequency.

This 156MHz^{*} signal is fed to amplifiers Q211 and Q212 through band-pass filter L219, L220 and L221, L222 to obtain 200 milliwatts pure 156MHz^{*} signal. While switching from receive to transmit, Q210 is turned ON by the charged voltage of C269, until the charged voltage has been discharged, and this function cuts the bias voltage of Q211 \sim Q213. This prevents transmission of unwanted signals. (*This frequency differs depending on the version.)

3-2-3 POWER AMPLIFIER CIRCUIT

The output signals from Q212 is fed to the power amplifier Q213, and amplified to 2.5 watts. In the transmit mode, D216 and D217 are turned ON, and D217 makes L228 have high-impedance and D216 feeds the signals to the antenna through the low-pass filter.

3-3 PLL CIRCUITS

3-3-1 LOCAL OSCILLATOR CIRCUIT

The crystal oscillator Q206 oscillates 35.77625MHz^{*} with X202 for receive, 40.00125MHz^{*} with X203 for transmit, and the signal at two times this frequency is taken from the collector of Q207, and fed to the mixer of the PLL circuit.

(*These frequencies differ depending on the version.)

In the receive mode, R+6V is applied to D210 through R223, L211 and R227, and D210 is turned ON and selects X202.

In the transmit mode, T+6V is applied to D211 through R224, L212 and R228, and D211 is turned ON and selects X203.

3-3-2 MIXER, LOW-PASS FILTER AND AMPLIFIER CIRCUITS

The output signals from the local oscillator circuit and the VCO signals fed through buffer amplifiers Q202 and Q203 are mixed by the mixer Q204. The output signals are fed to the low-pass filter to filter out only the signals below 7MHz, then fed to Q205 to be amplified to proper drive level (more than 3Vp-p) of the programmable divider IC201.

3-3-3 PROGRAMMABLE DIVIDER CIRCUIT

The input signals at Pin 2 of IC201 are divided by the BCD input signals from the matrix board at Pin $3 \sim 14$.

The programmable divider is also called the 1/N counter and the BCD value is N. The relationship between the operating frequency and the divide number N is:

```
N (divide number of programmable divider) =

<u>Receive (or Transmit) Frequency (MHz) – Local Osc Frequency (MHz)</u> – 1000

0.005
```

3-3-4 REFERENCE FREQUENCY GENERATOR CIRCUIT

Reference frequency generator IC203 consists of a crystal oscillator and a highspeed divider. X201 oscillates at 5.12MHz, which is divided by 2048. The 2.5KHz reference frequency is fed to phase detector IC202. This 2.5KHz reference frequency decides the variation step of the PLL output frequency.

3-3-5 PHASE DETECTOR AND LOOP FILTER CIRCUITS

Digital phase detector, IC202, detects the phase difference of the pulse signals of the 2.5KHz reference frequency and the output signal of the programmable divider, and proportionately puts out pulse signals at Pin 3, which becomes high impedance when the PLL is locked.

Pin 4 is for detecting the lock failures and changes to ground level according to the phase difference of the two pulse signals. When the lock fails, the pulse signal from Pin 4 is integrated by R202 and C215. When the integrated voltage exceeds the junction voltage of Q214's base, Q214 is turned ON and then Q107 in the MAIN boards is turned ON.

The collector of Q107 is connected to the base of Q108, so the base voltage of Q108 becomes ground level, and Q108 and Q106 are shut off to prevent transmitting unwanted signals.

The loop filter, consisting of R204, R205, R206, C213 and C214, converts the pulse signal from Pin 3 into a DC voltage and decides the response time of the whole loop.

The output signals are fed to tuning diode D203 of the VCO circuit as the control voltage for the VCO frequency set.

3-3-6 VCO CIRCUIT

The VCO (Voltage-Controlled Oscilator) is a Colpitts circuit using Q201, and oscillates in $70 \sim 80 MHz$ range.

The oscillator frequency is controlled by a DC voltage which is supplied from the loop filter to varactor diode D203.

In the receive mode, R+6V is applied to D204's anode through L201, and D204 is turned ON and shunts C220. Thus the free-run frequency of the VCO is lowered.

In the transmit mode, T+6V is applied to D204's cathode through D205 and L202, D204 is turned OFF, and C220 is inserted in the oscillator circuit in series. Thus the free-run frequency of the VCO is increased. In the same time, the VCO signal is frequency modulated by the audio signals from the microphone which are applied to the gate of Q201 and varies Q201's mutual conductance.

3-4 OTHER CIRCUITRY

3-4-1 POWER SUPPLY CIRCUIT

The regulated 6V is supplied to the main circuits, so that the set operates under a stable condition with as low power voltage as possible.

The power supply voltage is fed to the AF power amplifier through the squelch switching circuit and to the 6V regulator consisting of Q117 \sim Q120 and zener diode D104. This regulated 6V is supplied to the PLL circuit.

In the transmit mode, the base of Q123 is grounded through R155, the microphone and the PTT switch, and Q123 is turned ON. Thus Q106 and Q108 are turned ON and T+6V is actuated, and supplied to the transmitter circuit. At the same time, T+6V turns Q112 ON, and the power supply voltage is applied to the MIC amplifier circuit through Q112.

In the receive mode, Q123 is turned OFF and the bias voltage of Q109 ON. Thus the R+6V is actuated and supplied to the PLL board to switch the local oscillator crystal and the driver transistors of the transmitter circuit.

At the same time, R+6V turns ON the voltage boost circuit consisting of Q110 and Q111, and +6V is supplied to the receiver circuit.

3-4-2 LED INDICATOR CIRCUIT

This LED is lit in the transmit mode, but when the power supply voltage becomes less than 7V, it will not be lit.

The power supply voltage is divided by R148 and R149, and applied to the base of Q121. The emitter of Q121 is connected to the regulated 6V source. When the power supply voltage is more than 7V, Q121 is turned OFF, Q122 is turned ON and T+6V is applied to the LED through Q122 and R150, and the LED is lit.

3-4-3 DIODE MATRIX BOARD

The set incorporates a diode matrix board to determine its operation frequencies, and six channels each can be programmed into the board for transmit and receive.

+6V is applied to each channel line, one of receive channels $1 \sim 6$ and transmit channel $1 \sim 6$, through the channel select switch, and it is converted to BCD codes by diodes programmed into the board, then fed to IC201 to determine an operation frequency.

When duplex transmit function is required, calculate each N value for transmit frequency and receive frequency and program diodes into the board independently.

The receive only function is provided for channel 2 \sim Channel 6 by inserting a diode into the receive only line. At this time, a voltage is applied to the base of Q107 on the MAIN board through R404, and it turns Q107 ON and Q106 OFF. Thus, the set does not turn to the transmit mode, even if the PTT switch is depressed.

Crystal Frequency Chart

Or and the Free Process	Crystal Free	Crystal Frequency (MHz)								
Operating Frequency Range	X202 (Receive)	X203 (Transmit)	Frequency (MHz)							
150.005 ~ 155.000MHz	32.02625	36.25125	145.005							
$155.005 \sim 160.000$ MHz	33.27625	37.50125	150.005							
160.005 ~ 165.000MHz	34.52625	38.75125	155.005							
165.005 ~ 170.000MHz	35.77625	40.00125	160.005							

NOTE: The local oscillator frequency for calculation N value is the four times of the crystal frequency.

SECTION 5 INSIDE VIEWS

MAIN UNIT

PLL UNIT

	C291 (PA Output Trimmer)
P1 · P2 (Matrix Board Connectors)	C290 (PA Output Trimmer)
X203 (PLL TX LO Crystal)	L212 (X203 Frequency Adjust)
	Q213 (PA 2SC1947)
	L211 (X202 Frequency Adjust)
	C286 (Driver Output Trimmer)
X202 (PLL RX LO Crystal)	C285 (Driver Output Trimmer)
L215 · L216 (PLL LO Output Filter)	Q212 (Driver 2SC2053)
J201 · J202 (Matrix Board Connectors)-	L221 · L222 (TX Band-Pass Filter)
IC201 (TC9122 Programmable Divider)-	心 4
IC202 (TC5081 Phase Detector)	L203 (VCO Free-Run Frequency Adjust)
IC203 (TC5082 Oscillator/Divider)	VCO Circuit
	(210 - 1 220 /TV Read Ress Filter)
Crvstal)	
L217 · L218 (RX LO Band-Pass Filter)	

6-1 DISASSEMBLY OF THE CASES

- 1. Turn the power switch off and remove the power pack.
- 2. Remove two screws (A) on the rear panel and four screws on the bottom as shown in the figure.

3. Remove the front panel as shown in the figure. At this time, be sure not to damage the engaged parts at the top (circled with dotted lines).

1 open the bottom slightly and 2 slide the front panel downwards.

4. Slide the PTT Button upward, and then remove the rear panel.

6-2 DISASSEMBLY OF UNITS

1. When you wish to program some operation frequencies (channels), remove the rear panel, then unplug the connectors between the matrix board and PLL board, and tilt the matrix board as shown in the figure.

When you wish to remove the matrix board from the set, unplug the two connectors located on the front side end of the board.

To see the printed sides of the PC boards, open the chassis by removing two screws © located above and below the PTT spring.

6-3 PTT SPRING ASSEMBLY (HOW TO REPLACE PTT SPRING)

- 1. The PTT spring is soldered at its top as shown in the figure.
- 2. Remove the old spring by heating the soldered point.
- 3. Solder the hole at the top of the new spring.
- 4. Make sure that the new spring is soldered on parallel to the chassis.

6-4 TOP PANEL CONSTRUCTION

6-5 UNIT BOTTOM ASSEMBLY (BOTTOM VIEW)

(HOW TO REPLACE CONTACT SPRING)

- 1. Remove the sliding guide by removing the four screws as shown.
- 2. Remove the contact spring by removing the two screws as shown.
- 3. Set the new contact spring so that the split of the spring is on the positive side and the other end on the negative side.
- 4. Tighten the two screws.

SECTION 7 MAINTENANCE AND ADJUSTMENT

7-1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT

(1)	FREQUENCY COUNTER	FREQUENCY RANGE	0.1 - 180MHz
		ACCURACY	BETTER THAN ± 1 ppm
		SENSITIVITY	100mV or BETTER
(2)	SIGNAL GENERATOR	FREQUENCY RANGE	0.1MHz - 180MHz
		OUTPUT VOLTAGE	$-20 - 90$ dB (0dB = 1 μ V)
(3)	MULTIMETER	50K Ω /Volt or better	
(4)	AC MILLIVOLTMETER	MEASURING RANGE	10mV - 2V
(5)	RF VOLTMETER	FREQUENCY RANGE	0.1 - 180MHz
		MEASURING RANGE	0.01 - 10V
(6)	RF WATTMETER (Terminated Type)	MEASURING RANGE	$5 \sim 10$ Watts
		FREQUENCY RANGE	140 - 180MHz
		IMPEDANCE	50 OHMS
		SWR	LESS THAN 1.1
(7)	AF OSCILLATOR	OUTPUT FREQUENCY	200 - 3000Hz
		OUTPUT VOLTAGE	0 - 200mV
		DISTORTION	LESS THAN 0.1%
(8)	OSCILLOSCOPE	FREQUENCY RANGE	DC – 15MHz
		MEASURING RANGE	0.01 – 10V
(9)	FM DEVIATION METER	FREQUENCY RANGE	140 ~ 180MHz
		MEASURING RANGE	0 ~ ±10KHz
(10)	DIRECTIONAL COUPLER	FREQUENCY RANGE	140 ~ 180MHz
(11)	AMPERMETER	MEASURING RANGE	0~1.5A DC
(12)	DUMMY LOAD OR EXTERNAL		
	SPEAKER	IMPEDANCE	8 OHMS
(13)	VOLTAGE REGULATED POWER		
	SUPPLY	OUTPUT VOLTAGE	$5 \sim 11 V DC$ (adjustable)
		CAPACITY	1.5A OR MORE

7-2 PRELIMINARY CHECKS

7-2-1 TRANSMITTER OUTPUT CHECKS

- 1. Connect a 50 ohms RF wattmeter to the ANT connector.
- 2. Setting the Set to any programmed channel and key the transmitter. Observe the RF power OUT-PUT.
- 3. Power output should be $2.5 \sim 3.0$ watts at rated input (power supply) voltage.

7-2-2 RECEIVER CHECKS

Make all checks at 8.4V DC

1.	Settings of controls a	and switches
	Power switch	ON
	Squelch Control	Fully counterclockwise
	Frequency	Any programmed channel

- 2. Connect an AF voltmeter to the EXT SP jack and set the SQL control fully counterclockwise.
- 3. Connect the RF output of a VHF signal generator to the ANT connector.
- Adjust the VOL control and the AF voltmeter range. Adjust the VOL control for a full scale reading on the AF voltmeter. Don't change the VOL control setting after this adjustment.
- 5. Set the signal generator to the receiving frequency and adjust the output level of the signal generator until the AF voltmeter shows a 20dB decrease in reading.
- 6. The signal generator output voltage at this point is the 20dB quieting sensitivity.

7-3 PREPARATION AND PROCEDURE BEFORE SERVICING

- 1. Confirm defective operation and check to make sure setup or external sources are not the cause of the problem.
- 2. Proper tools and measuring instruments are required for repair and adjustment. Don't try to repair or modify without them.

- 3. Remove the transceiver case as shown on Page 6 1. Use a screw driver that fits the screw.
- 4. To open the hinge chassis remove the two screws as shown on Page 6 2.
- 5. Attach an 8.0 \sim 11.0V DC external power source to the battery clip or screw. Be sure to check the polarity.
- 6. In the case of a transmission problem, a dummy load should be connected to the antenna connector. In the case of a receiving problem, an antenna or signal generator is connected to the antenna connector. Be careful not to transmit into the signal generator.
- 7. Recheck for the suspected malfunction with the power switch on.
- 8. Check the defective circuit and measure the DC voltages of the collector, base and emitter of each transistor.
- 9. When checking a transmission problem, it is convenient to short circuit an accessory mic connector plug and insert it, turning on the transmitter.

7-4 HOW TO CHECK

7-4-1 RECEIVE

- 1. Check the frequency of P.L.L. unit when you are unable to receive with a strong signal present and noise present when turning up the AF volume.
- 2. When no noise is present at the speaker, check audio frequency amplifier or 6V regulator first.
- 3. Inject RF through a 0.01μ F capacitor from an FM signal generator modulated with 1KHz audio modulation (FM), to points (A) through (D) in order, check for receiver output.
 - (A) = Selected channel frequency
 - (B) = Selected channel frequency
 - (C) = 16.900 MHz
 - (D) = 16.900 MHz
- 4. Check (E) and (F) with an oscilloscope, for demodulated output in the audio frequency range.

7-4-2 TRANSMITTER

- 1. Check (A) through (G) in order with RF voltmeter.
- 2. When the transmitter output is low, check regulated power supply voltage first, do not turn coil trimmers.
- 3. When transmission is normal, RF is present and it is not possible to measure the DC voltage accurately with a voltmeter.

7-4-3 MODULATION

- 1. Put a signal into the EXT MIC connector (1KHz 40mV) with an AF oscillator or an external mic.
- 2. Check the AF voltages (A) through (E) in order with an oscilloscope.

7 - 4 - 4 P.L.L.

- 1. Check (A) with an oscilloscope. A lock failure is indicated by an instability or absence of the wave form. Check as follows:
- 2. Check the Frequency of the master oscillator (5.12MHz). If a 2.5KHz 5Vp-p squarewave is not observed at (B), measure DC voltage on Pin 5 of IC203 if no oscillation.
- 3. Wave measure the output of (C) and (D) with an oscilloscope.
- 4. Measure DC voltage of Q201, Q202, Q203, Q204 and Q205.
- 5. If the transmit or receive frequency differs from the programmed frequency, check the voltage of A1 to C4 on the IC201 (BCD control lines from matrix board).

7-5 BASIC ALIGNMENT PROCEDURE

7-5-1 P.L.L. CIRCUIT

A. Lock Adjustment

- 1. Connect the measuring instrument and set the control knobs as follows:
 - Connect an oscilloscope (15MHz band width) to R217.
 - Connect voltmeter between R205 and ground.
 - Set the channel select switch at a programmed channel (center frequency of the operating frequency range is recommended).

2. Procedure

When the circuit is operating normally, adjust coil L203. The P.L.L. will lock.

- Adjust the coil of L203, and the voltage of R205 varies between $0 \sim 6V$, and P.L.L. should lock.
- Adjust L203 for 3V after lock.

Next, in Receive adjust L216 for maximum voltage (P-P value) on the oscilloscope and then during transmission adjust L215 to maximum. Set the channel select switch at a high edge channel, and repeat adjustment of L215, L216 several times. After that, confirm the following voltage of R205 (both transmission and receiving)about 2V at a low edge channel and 4V at a high edge channel, and that the voltage of R217 (both transmission and receiving) is over 2Vp-p (over operating range of the radio). If the P.L.L. won't lock, check these voltages: R+6V, T+6V, 6V constant, and the P.L.L. LO and reference frequency oscillator for oscillation.

- B. Reference Frequency Oscillator Check
 - 1. Connect a frequency counter through a capacitor to Pin 1 of IC203.
 - 2. Confirm frequency is: 5.120MHz ±250Hz.

C. P.L.L. LO Frequency Adjustment

- 1. Connection of the measuring instruments and the setting of knob.
 - •When adjusting the receiving frequency, connect the frequency counter to R257 through a capacitor. After power adjustment, loosely couple the set to a frequency counter with capability of more than 180MHz (with dummy load connected), so that the transmitting frequency can be obtained.

- 2. Set the channel select switch at a programmed channel.
 - In the receive mode, adjust L211 for the programmed receiving frequency minus 16.9MHz.
 - In the transmit mode, adjust L212 for the programmed transmitting frequency.
 - Then check again, because these adjustments interact.
- 3. Confirmation
 - Check each frequency:

All frequencies should be within ± 500 Hz.

7-5-2 TRANSMISSION

- A. Power Adjustment
 - 1. Connection of measuring instruments and setting of the knobs.
 - Connect ANT to 50 ohm power meter.
 - Connect a voltmeter and variable power supply to the set.
 - CAUTION: Applying over 12V can damage the P.A. transistor.
 - Set the channel select switch at a programmed channel.
 - 2. Procedure
 - Adjust L219 through L222 and C285, C286, C290 and C291 for maximum power output while pushing PTT switch.
 - If the total current drain exceeds 1000mA, adjust C291 to set the current at 1000mA, and repeat above procedures.
 - 3. Confirmation

More than 2.5W output, less than 1000mA current drain. No abnormality in operation should be found if the supply voltage is varied from 7.0V to 10.8V.

B. Modulation Adjustment

1. Connecting the measuring instrument and the settings of the controls.

Connect a deviation meter to the ANT Connector with a directional coupler or attenuator.

Deviation meter filter shall be a High Pass Filter 50Hz, L.P.F. 20KHz. De-emphasis OFF.

- Set the channel select switch at a programmed channel.
- Connect an AF oscillator, with AF millivoltmeter in parallel, to the mic input.
- 2. Procedure

Mic input shall be 1KHz 120mV RMS. During transmit, adjust R171 on the main unit for 4.5KHz deviation.

3. Modulation check

Maximum deviation: With 1KHz 120mV shall be 4.5KHz \pm 10%.

Modulation sensitivity: Mic input voltage $12mV \pm 3dB$ at 1KHz. Deviation should be 3.5KHz.

S/N Ratio:

Connect the output of the deviation meter to a millivoltmeter. With no audio input to the mic input, take the voltmeter reading. Now apply 1KHz 40mV audio into the mic connector. Take the voltmeter reading. The ratio should be greater than 40dB.

C. Spurious Transmission

Connect spectrum analyzer with appropriate attenuation. Confirm nearby random spurious signals below fundamental frequency less than -60dB.

Measure the harmonic wave output, adjust RF-ATT until noise level just appears.

Should be less than -60dB below the fundamental frequency.

7-5-3 RECEIVER

- A. LO Output Adjustment
 - Set the channel select switch at a programmed channel (center frequency of the frequency range is recommended). Adjust L217 and L218 for maximum output on an RF voltmeter attached to R257.
 - Then set the channel select switch at a high edge frequency channel and adjust L217 and L218 with the same procedure.
 - Repeat above procedures to obtain the same reading on the RF voltmeter on either channel. The output voltage should be about 200mV.
- B. RF IF DET Coil Adjustment.
 - 1. The connecting point of measuring instrument and the setting of the knob.
 - Set the channel select switch at a programmed channel.
 - Connect a signal generator to the antenna connector.
 - Connect an external speaker and AF millivoltmeter to the EXT SP terminal.
 - 2. Procedure

Set RF voltage meter (minimum range) to Pin 16 on IC101 in the IF, adjust L101 through L105 maximum output while setting the input from the signal generator as low as possible. Then vary the input frequency from the signal generator ± 10 KHz. Check if rippling (change in output level) occurs. If ripple is over 3dB, readjust L105.

Set signal generator output to -80dBm to -90dBm and deviation to 3.5KHz. Set signal generator frequency to speaker output maximum. After that, adjust L107 for maximum output.

3. Confirmation

Sensitivity should be less than $-8dB\mu$ (0.4 μ V) for 20dB quieting.

C. 2nd LO Frequency Check

Connect a 16.9MHz amplifier to the frequency counter, check the frequency of X101 (2nd OSC) with a loose couple. It should be: 16.900MHz ±400Hz.

D. Receiver Spurious Response

Connect a speaker and millivoltmeter to the EXT SP. Connect a 50 ohm dummy load to the antenna terminal. All receiver spurious should be supressed less than 3dB, over entire frequency range.

E. Receive Audio Output

Connect a millivoltmeter, oscilloscope, and a distortion meter to the EXT SP connector. To the ANT terminal connect the signal generator and set the signal generator to -80 to -90dBm and deviation to 3.5KHz. Turn up AF VOL control. Read the millivoltmeter when the distortion is 10%.

BOARD LAYOUT

BOARD LAYOUT

BOARD LAYOUT

MATRIX UNIT

SECTION 9 VOLTAGE CHARTS

TRANSISTORS VOLTAGE CHART

• Measuring instrument is a 50K Ω/V multimeter.

.

			TRANSMIT		1	RECEIVE		
UNIT	NO.	BASE	COLLECTOR	EMITTER	BASE	COLLECTOR	EMITTER	REMARKS
		or GATE	or DRAIN	or SOURCE	GATE	or DRAIN	SOURCE	
MAIN	Q101	0	0	GND	0.8	1.2	GND	RF Amp
	Q102	0	0	0	1.9	5.8	1.2	RF Amp
	Q103	0	0	0	0	6.0	1.4	1st Mixer
	Q104	0	0	GND	0.7	0.9	GND	1st IF Amp
	Q105	0	0	0	1.5	2.8	0.9	1st IF Amp
	Q106	5.2/6.0	5.9/0	6.0	6.0	0	6.0	T/R Switch Locked/Unlocked
	Q107	0 /0.6	0.7/0	GND	0 /0.6	0.3/0	GND	T/R Switch Locked/Unlocked
	Q108	0.7	0	GND	0.3	6.0	GND	T/R Switch
	Q109	5.8	0	6.0	5.3	6.0	6.0	T/R Switch
	Q110	0	8.1	0.4	6.0	7.7	5.4	T/R Switch
	Q111	8.1	0	8.4	7.7	6.2	8.4	T/R Switch
	Q112	5.9/0	8.0/8.4	5.2/0	0	8.4	0	T/R Switch Locked/Unlocked
	Q113	0	0.6	0	4.2	0~1.2	3.2 ~ 3.7	Noise Detector SQL CLOSED/SQL OPENED
	Q114	0.6	0	GND	0.6/0	0 /8.0	GND	Squeich Control Closed/Opened
	Q115	0	8.0	0	0 /8.0	8.0	0 /7.4	Squelch Control
	Q116	8.0	0	8.4	8.0	0 /7.4	8.4	T/R Switch SQL Closed/Opened
	Q117	0.6	8.4	1.7	0.6	8.4	1.7	Regulator
	Q118	7.7	6.0	8.4	7.7	6.0	8.4	Regulator
	Q119	0.6	6.0	GND	0.6	7.4	GND	Regulator
	Q120	0.6	0.6	GND	0.6	0.6	GND	
	Q121	6.4	4.5	6.0	6.4	0	6.0	Indicator Control
	Q122	4.5	5.1/0	5.2/0	0	0	0	Indicator Control Locked/Unlocked
	Q123	4.6	5.2	5.2	6,0	1.6	6.0	T/R Switch
	Q125	3.0	5.2	2.6	0	0	0	Mic Amp
	Q126	3.2	5.1	2.6	0	0	0	Mic Amp
	Q127	5.1	2.0	5.2	0	0	0	Mic Amp
	Q128	0.3	2.4	GND	0	0	GND	Limiter
	Q129	2.4	5.2	3.1	0	0	0	Low Pass Filter
PLL	Q201	0	5.2	0.6	0	5.2	0.6	VCO, FM Mod.
	Q202	0.6	1.0	GND	0.6	1.0	GND	Buffer Amp
	Q203	1.6	3.4	1.0	1.6	3.4	1.0	Buffer Amp
	Q204	0.7	0.8	GND	0.7	0.8	GND	PLL Mixer
	Q205	1.8	3.4	1.3	1.8	3.4	1.3	Level Converter
	Q206	2.2	5.9	1.8	2.2	5.9	1.8	Multiplier
	Q207	0	0	1.2	1.6	5.8	1.0	Multiplier
	Q208	0.5	1.2	GND	0.5	1.0	GND	Buffer Amp
	Q209	1.7	5.6	1.2	0	0	1.0	Multiplier
	Q210	-0.6~0	1.5	GND	0.7	0	GND	T/R Switch
	Q211	1.4	8.0	0.6	0	8.4	0	Buffer Amp
	Q212	0.6	8.4	0.2	0	8.4	0	Driver
	Q213	0.5	8.4	GND	0	8.4	GND	Power Amp
	Q214	5.9/5.4	0 /6.0	6.0	5.9/5.4	0 /6.0	6.0	Lock Failure Mute Locked/Unlocked

IC'S VOLTAGE CHART

IN TRANSMIT MODE

UNIT IC	10.11-		PIN No.													DEMADING				
	IC NO.	1	2	•3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	REMARKS
MAIN	IC101	0	0	0	0	0	0	0	0	0	0	0	GND	0	0	GND	0			
MAIN	IC102	0	0	0	0	GND	0	0	0	0										
PLL	IC201	6.0	2.0	*	*	*	*	*	*	*	*	*	*	*	*	*	0	0	GND	
PLL	IC202	0	3.0	1~5	6.0	6.0	0	0	3.0	GND										
PLL	IC203	1.4	2.5	2.5	-	6.0	3.0	-	-	GND										

* 6.0V or 0V depending on the diode matrix programming.

IN RECEIVE MODE

UNIT IC No.	10 N		PIN No.													<u> </u>				
	IC NO.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	HEWARKS
MAIN	IC101	6.0	5.6	5.9	6.2	1.0	1.0	1.0	6.2	3.5	1.9	2.0	GND	5.6	0	GND	2.0			
MAIN	IC102	5.9	3.9	7.4	3.3	GND	3.3	3.3	3.1	7.4										SQL OPEN
PLL	IC201	6.0	2.0	*	¥	*	*	*	*	*	*	*	*	*	*	*	0	0	GND	
PLL	IC202	0	3.0	1~5	6.0	6.0	0	0	3.0	GND										
PLL	IC203	1.4	2.5	2.5	-	6.0	3.0	-	-	GND										

* 6.0V or 0V depending on the diode matrix programming.

SECTION 10 TROUBLESHOOTING

NO POWER ON

TC-9122P (BCD PROGRAMMABLE COUNTER)

MAXIMUM RATINGS (Ta = 25°C)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vdd	Supply Voltage	10	v
Vin	Input Voltage	-0.3 ~ VDD +0.3	v
Topr	Operating Temperature	-30~ 75	°C
Tstr	Storage Temperature	-55~125	°C

PIN CONNECTION

BLOCK DIAGRAM

MC-3357 (LOW POWER FM IF)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vcc	Supply Voltage (MAX)	12	VDC
Vcc	Operating Supply Voltage	4 to 8	VDC
VIN	Input Voltage	1.0	VRMS
TOPR	Operating Temperature	-30~+70	°C
TSTG	Storage Temperature	-65 ~ +150	°C

MAXIMUM RATINGS (Ta = 25° C)

BLOCK DIAGRAM

PIN CONNECTION

TC-5081 (PHASE COMPARATOR)

MAXIMUM RATINGS (Ta = 25°C)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vdd	Supply Voltage	10	v
Vin	Input Voltage	-0.3 ~ VDD +0.3	v
Topr	Operating Temperature	-30~ 75	°C
Tstr	Storage Temperature	-55 ~ 125	°C

PIN CONNECTION

TC-5082 (OSCILLATOR AND 10 STAGE DIVIDER)

MAXIMUM RATINGS (Ta = 25°C)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vdd	Supply Voltage	10	v
Vin	Input Voltage	−0.3 ~ VDD +0.3	v
Topr	Operating Temperature	-30~ 75	°C
Tstr	Storage Temperature	-55 ~ 125	°C

PIN CONNECTION

BA-526 (700mW AMPLIFIER)

MAXIMUM RATINGS (Ta = 25° C)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vcc	Supply Voltage	9	v
Pd	Permissible Dissipation	700	mW
TOPR	Operating Temperature	-10~+65	°C
TSTG	Storage Temperature	-30 ~ +125	°C

PIN CONNECTION

SECTION 12 PARTS LIST

[EF PARTS]

REF NO.	DESCRIPTIO	ON (PART NO)	BOARD LOCATION
D1	LED	SLC-26UR	
R1	Variable Resistor	K121B1003E5N	(VOL)
R2	Variable Resistor	K12141014- 5N1212-10KB	(SQL)
C1 C2 C3	Ceramic Ceramic Ceramic	470pF/50V 470pF/50V 15pF/50V	
J1 J2 J3	Connector Connector Connector	BNC-RM HSJ0296-01-150 HSJ0289-01-050	(ANT) (EXT SP) (MIC)
P1	Connector	XHP-13	
S1	Rotary Swite	ch SRM1026	
SP1	Speaker	45P30S	
MC1	Microphone	EM-80	
B1	P.C. Board	B-415 (Contact Board)	

[MAIN UNIT PARTS]

REF NO.	DESCRIPT	ION (PART NO)	BOARD LOCATION
IC101	IC	MC3357	2D
IC102	IC	BA526	4A
Q101	Transistor	2SC2026	1A
Q102	Transistor	2SC2668-O	1A
Q103	FET	2SK192-Y	1C
Q104	Transistor	2SC2668-O	2C
Q105	Transistor	2SC2668-O	2C
Q106	Transistor	2SA1048-Y	1E
Q107	Transistor	2SC2458-GR	1E
Q108	Transistor	2SC2458-GR	1E
Q109	Transistor	2SA1048-Y	2D
Q110	Transistor	2SC2458-GR	1C
Q111	Transistor	2SA1048-Y	1C
Q112	Transistor	2SC2458-GR	2E
Q113	Transistor	2SA1048-Y	3C
Q114	Transistor	2SC2458-GR	4C
Q115	Transistor	2SC2458-GR	3B
Q116	Transistor	2SB562-C	4C
Q117	FET	2SK192-Y	1G
Q118	Transistor	2SB562-C	1G
Q119	Transistor	2SC2458-GR	1G
Q120	Transistor	2SC2458-GR	1F
Q121	Transistor	2SA1048-Y	2F
Q122	Transistor	2SA1048-Y	2E
Q123	Transistor	2SA1048-Y	1D
Q124	Transistor	2SC2458-GR	4D
Q125	Transistor	2SC2458-GR	4E
Q126	Transistor	2SC2458-GR	4E

[MAIN UNIT PARTS]

REF NO.	DESCRIPTIO	N (PART NO)	
Q127	Transistor 2	2SA1048-Y	4F
Q128	Transistor 2	2SC2458-GR	4F
Q129	Transistor 2	2SC2458-GR	4G
Q130	Transistor 2	2SC2458-GR	1G
Q131	Transistor 2	2SA1015-Y	1G
Q132	Transistor 2	2SC2458-GR	3F
D101	Diode 1	IS1555	2C
D102	Diode 1	IS1555	4D
D103	Zener Diode V	NZ-081	3C
D104	Zener Diode	=Z-056A	1F
D105	Diode 1	IS1555	3F
F1101	Crystal Filter	16M15B2	1B-2C
F1102	Ceramic Filter	CFU455E2	3E
X101	Crystal 16.4	45MHz HC-18/T	2E
L101	Inductor l	_S-160	2A
L102	Inductor l	_S-160	1A
L103	Inductor l	_S-160	1B
L104	Inductor l	_S-160	1B
L105	Inductor l	_S-221	1C
L107	Inductor I	_S-158	4D
R101	Resistor	10K Ω -J ELR10	2A
R102	Resistor	100KΩ-J ELR10	1A
R103	Resistor	100 Ω -J ELR10	2B
R105	Resistor 5	56Ω -J ELR10	1C
R106	Resistor 2	220Ω -J ELR10	1C
R107	Resistor 4	$47K\Omega$ -J ELR10	2C
R108	Resistor	1.2K12 - J ELR10	20
R109	Resistor 3	SOKS2-J ELRIU	20
	Resistor	IUK12 -J ELKIU	20
KIII D112	Resistor	I.SK12 J ELRIU	25
D112	Resistor /	17KO J ELRIO	35
R114	Resistor 2	22KO J ELRIO	3D
R115	Resistor 4	1700 J B10	40
R116	Resistor ?	30KΩ-1 EL B10	3D
R117	Resistor 4	$1.7K\Omega$ -J ELB10	4C
R118	Resistor 5	5.6KΩ -J ELR10	3D
R119	Resistor 1	KΩ -J ELR10	1E
R120	Resistor 2	2.2K Ω -J ELR10	1E
R122	Resistor 3	3.3KΩ -J ELR10	1D
R123	Resistor 1	IKΩ -J ELR10	1E
R124	Resistor 3	$B.3K\Omega - J ELR10$	1D
R125	Resistor	IOK Ω -J ELR10	1D
R126	Resistor	IOK Ω -J ELR10	1C
R127	Resistor	ΙΟΚ Ω -J ELR10	1C 1
R128	Resistor	1.5KΩ-J ELR10	1C
R129	Resistor 4	47Ω -J ELR10	2E
R130	Resistor 6	58KΩ J ELR10	2C
R131	Resistor 2	22KΩ -J ELR10	2B
R132	Resistor	IOKΩ -J ELR10	3B
R134	Resistor	15KΩ -J ELR10	30
R135	Resistor 1	IUKM -J ELR10	30
K136	Resistor 4	1/K12 -J R10	4U 4C
K137	Resistor 2	22KM -J ELK10	40
n 138	riesistor 2	ZAVA -1 ETHIO	30

[MAIN UNIT PARTS]

REF NO.	DESCRIPTI	ON (PART NO)	BOARD LOCATION		REF NO.	DESCRIPT
R139	Resistor	330Ω -J ELR10	4A		C119	Ceramic
R140	Resistor	3.3KΩ-J ELR10	1F		C120	Ceramic
R141	Resistor	4.7KΩ-J ELR10	1G		C121	Ceramic
R142	Resistor	2.2Ω -J ELR10	1G		C122	Barrier Lay
R143	Resistor	2.7KΩ J ELR10	1F		C123	Electrolytic
R144	Thermistor	33D28	1F		C124	Ceramic
R145	Resistor	470Ω -J ELR10	1F		C125	Barrier Lay
R146	Resistor	22KΩ -J ELR10	1E			
R147	Resistor	47052 -J ELR10	1D		C126	Electrolytic
R148	Resistor	220KΩ-J ELR10	11-		C127	Electrolytic
R149	Resistor	47KΩ -J ELR10	2F		C128	Ceramic
R150	Resistor	33012 -J ELRIU	16		0129	Ceramic
R151	Resistor	IUKSZ -J ELRIU			0130	Ceramic
R152	Resistor	33K12 -J ELRIU	40		0122	Ceramic
R153	Resistor	TOUKS2-J ELRIU	46		0132	Ceramic
R154	Resistor	150K12-J ELRIU	40		0133	Electrolytic
R155	Resistor	2.2KM J ELRIU	40		0134	Electrolutio
R150	Resistor	08K12 -J ELRIU	46		C135	Electrolytic
R157	Resistor	120K32-J ELKIU	40		0130	Electrolytic
R 150	Resistor	4/012 J ELNIU	46		C120	Electrolytic
R159	Resistor	4.7 N32 -J ELNIU	40		C130	Electrolytic
D161	Resistor	3.3K42-3 ELNIU	40		C135	Coromic
RIDI 0162	Resistor	10KO ELRIO	46		C140	Electrolytic
R102	Resistor	10K12 -J ELNIU	46		C141	Electrolytic
D164	Resistor	1KO LELP10	46		C142	Coramic
D165	Resistor	1N12 JELNIU	46		C143	Electrolytic
D166	Resistor	2.2K32-5 ELRI0	41		C144	Electrolytic
D167	Resistor	2.2K32-3 CLN10	4		C146	Electrolytic
R168	Resistor		41 4F		C147	Ceramic
R160	Resistor	82KO J EL R10	46		C148	Electrolytic
B170	Resistor	100KQ-1 EL B10	46		C149	Ceramic
R171	Resistor	WHS512A 10KΩ	4G		C150	Electrolytic
B175	Resistor	3.9KΩ-J B10	2G		C151	Ceramic
B176	Resistor	10KΩ -J B10	2G		C152	Electrolytic
B177	Trimmer	Η0651Α 4.7ΚΩ	3F		C153	Ceramic
R178	Resistor	47KΩ -J ELR10	3F	ĺ	C154	Electrolytic
R179	Resistor	33K Ω -J ELR10	3F		C155	Electrolytic
R180	Resistor	47KΩ -J ELR10	2E		C156	Electrolytic
R181	Resistor	1KΩ →J ELR10	2C		C157	Electrolytic
R182	Resistor	470Ω -J ELR10	1A		C158	Barrier Lay
C101	Ceramic	8pF/50V	2A		C159	Ceramic
C102	Ceramic	1pF/50V	2A		C160	Ceramic
C103	Ceramic	100pF/50V	2A	1	0100	Ceramic
C104	Ceramic	4/0pF/50V	1A		C162	Electrolytic
C105	Ceramic	4/0pF/50V			0103	Ceramic
C106	Ceramic	7pF/50V			0105	wytar
C107	Ceramic	/pF/50V	18		0105	Mylar
0108	Ceramic	0.35pF/50V	IB 1D		C100	Ceramic
0109	Ceramic	0.35pF/50V	IB 1D		0107	Electrolytic
C110	Ceramic	5pF/5UV	IB 10		0170	Ceramic
CIII	Barrier Lay	TBD05V				Darrier Lay
C112	Barrier Lay	0.0047µF/50V	1C		C174	Electrolytic
		TBD05V			C175	Electrolytic
C114	Ceramic	5pF/50V	2B		C176	Ceramic
C115	Ceramic	0.001µF/50V	2C			
C116	Barrier Lay	0.0047µF/50V	2C		S101	Switch
		TBD05V				
C117	Tantalum	10µF/6.3∨ ECSF6E_10	2E		B101	P.C. Board
C118	Barrier Lay	0.0047µF/50V TBD05V	2C			Beads Core

[MAIN UNIT PARTS]

	REF NO.	DESCRIPTI	ON (PART NO)	BOARD LOCATION
	C119	Ceramic	0.001µ/50V	2C
	C120	Ceramic	22pF/50V	2D
	C121	Ceramic	120pF/50V	2E
	C122	Barrier Lay	0.1µF/16V	3E
	C123	Electrolytic	0.1µF/50V MS7	3E
	C124	Ceramic	10pF/50V	3E
	C125	Barrier Lay	0.0033µF/50∨	4C
	0400	-	TBD05V	40
	C126	Electrolytic	0.22µF/50V MS7	40
1	C127	Coromio	0.22μ F/50V WS/	40
	C120	Ceramic	0.001μ F/50V	30
	C130	Ceramic	0.001μ F/50V	3C
	C131	Ceramic	33pF/50V	3C
	C132	Ceramic	0.001µF/50V	3C
	C133	Electrolytic	4.7µF/35V MS7	1E
	C134	Ceramic	470pF/50V	1E
	C135	Electrolytic	1µF/50V MS7	3C
	C136	Electrolytic	0.47µF/50V MS7	4D
	C137	Electrolytic	1μF/50V MS7	3C
	C138	Electrolytic	3.3µF/50V MS/	3D
	C139	Electrolytic	10µF/16V MS/	4A 2A
	C140	Ceramic	0.001μ F/50V	3A
	C141	Electrolytic	0.47μF/50V MS7	44
	C142	Ceramic	$0.001 \mu E/50V$	4B
	C144	Electrolytic	$100\mu F/10V$ MS9	4B
	C145	Electrolytic	47µF/10V MS9	4A
	C146	Electrolytic	100µF/10V MS9	4B
	C147	Ceramic	0.001µF/50V	4C
	C148	Electrolytic	47µF/25V MS9	4D
	C149	Ceramic	470pF/50V	1G
	C150	Electrolytic	0.22µF/50V MS7	11-
	C151	Ceramic	4/UpF/50V	16
	C152	Ceramic	$100\mu F/10V$ 1059 470n F/50V	1F 1F
	C153	Electrolytic	100µE/10V MS9	1E
	C155	Electrolytic	10µF/16V MS7	1D
	C156	Electrolytic	0.47µF/50V MS7	4D
	C157	Electrolytic	10µF/16V MS7	4E
	C158	Barrier Lay	0.01µF/50V	4D
			TBD05V	
	C159	Ceramic	470pF/50V	4E
	C160	Ceramic	4/0pF/50V	46
	C167	Electrolytic	4/UPF/50V 1//E/50V/ MS7	46
	C163	Ceramic	0.01 <i>µ</i> E/50V	4E
	C164	Mylar	0.0027µF/50V	4F
	C165	Mylar	0.0047µF/50V	4F
	C166	Ceramic	120pF/50V	4G
	C167	Electrolytic	1µF/50V MS7	4G
	C168	Ceramic	0.001µF/50V	3D
	C170	Barrier Lay	0.0047µF/50V	3F
		 .	TBD05V	45
	C174	Electrolytic	10µF/16V MS7	4E
	C175	Electrolytic	0.4/µF/50V MS/	3E
		Ceramic	470pr/50V	40
	S101	Switch	TWN-0301	1D
			D 0010	
	8101	P.C. Board	R-3ALC	
		Beads Core	DL-20P2.6-3-1.2H	

[PLL UNIT PARTS]

REF NO.	DESCRIPTION (PART NO)	BOARD LOCATION		REF NO.	DESCRI
IC201	IC TC9122P	2E		R205	Resistor
IC202	IC TC5081P	1F		R206	Resistor
IC203	IC TC5082P-GL	16		R207	Resistor
0001		25		R209	Resistor
0201	FEI 25K192-1	35		R210	Resistor
0202	Transistor 25C2668 O	35		R211 P212	Resistor
0203	Transistor 25C2668-0	30		R212	Resistor
0204	Transistor 25C2000-0	20		R213	Resistor
0206	Transistor 2SC2026	10		R215	Resistor
0207	Transistor 2SC2668-O	3G		R216	Resistor
Q208	Transistor 2SC2026	3G		R217	Resistor
Q209	Transistor 2SC2668-O	3G		R218	Resistor
Q210	Transistor 2SC2458-GR	4G		R219	Resistor
Q211	Transistor 2SC383TM	4F		R223	Resistor
Q212	Transistor 2SC2053	4D		R224	Resistor
Q213	Transistor 2SC1947	4B		R227	Resistor
Q214	Transistor 2SA1048-Y	2E	1	R228	Resistor
D 000		05		R231	Resistor
D203	Varactor Diode 15V50	3E		R232	Resistor
D204	Diode 18853	4E		HZ33	Resistor
D205 D210	Diode 15553	40		R234	Resistor
D210	Diode 18853	10		R235	Resistor
D211	Diode 151555	3G		R238	Resistor
D215	Diode 1S1209	4C		R239	Resistor
D216	Diode 1SS53	4B		R240	Resistor
D217	Diode 1SS53	4A		R241	Resistor
D218	Diode 1S1555	3F		R242	Resistor
				R243	Resistor
X201	Crystal 5.12000MHz HC-18/T	2F		R244	Resistor
X202	Crystal * HC-18/1	2C		R245	Resistor
X203	(*Refer to page 3 - 4)	28		R240	Resistor
1 201	(* Nerei to page 3 – 4)	3D		R247	Resistor
1 202	Inductor LB-79	4F		R249	Resistor
1 203	Inductor LB-88	4E		R250	Resistor
L204	Inductor LW-20	3D		R252	Resistor
L205	Inductor 100 L4	1D		R253	Resistor
L206	Inductor LR-79	3D		R254	Resistor
L211	Inductor LB-91	3C		R256	Resistor
L212	Inductor LB-134	2B		R257	Resistor
L215	Inductor LS-160	2C			
L216	Inductor LS-160	3C		C201	Ceramic
L217	Inductor LS-160	16		C202	Ceramic
L218	Inductor LS-160	26		C203	Ceramic
L219	Inductor LS-160	40		C204	Ceramic
1 221	Inductor LS-160	40		C205	Ceramic
1221	Inductor LS-160	4F		C200	Ceramic
L223	Inductor LA-127	4D		C208	Ceramic
L224	Inductor LA-126	4C		C209	Ceramic
L225	Inductor LA-121	4B		C210	Ceramic
L226	Inductor LA-121	4B		C211	Ceramic
L227	Inductor LR-78	4A		C212	Ceramic
L228	Inductor LA-136	4A		C213	Tantalur
L229	Inductor LA-135	4A		C214	Barrier L
L230	Inductor LA-143	4A		001-	<u>-</u>
L231	Inductor LR-77			C215	Electroly
L232	Inductor LK-118	30			Ceramic
8202	Resistor A7KO I EL P10	2F		C220	Ceramic
R202	Resistor 12KO I FL R10	2F		C221	Electroly
R204	Resistor $1K\Omega$ -J ELR10	3F		C222	Ceramic
		· ·			

[PLL UNIT PARTS]				
ANALY AND	REF NO.	DESCRIPTION (PART NO)		BOARD LOCATION
	R205	Resistor	470Ω -J R10	3F
	R206	Resistor	100K Ω -J ELR10	3F
	R207	Resistor	100KΩ-J ELR10	3E
	R209	Resistor	220Ω -J ELR10	4F
	R210	Resistor	22KΩ -J ELR10	4F
	R211	Resistor	220\2 -J ELR10	3E
the second se	R212	Resistor	33K12 - J ELR10	
ĺ	R213 D214	Resistor	22KO J ELRIO	30
	R214	Resistor	2.2K32-3 ELNIO	30
I	R216	Resistor	$10K\Omega - J ELR10$	2D
	R217	Resistor	2.2KΩ -J R10	2D
	R218	Resistor	220K Ω -J ELR10	2D
	R219	Resistor	470Ω -J ELR10	2D
	R223	Resistor	2.2KΩ-J ELR10	3C
	R224	Resistor	2.2KΩ-J ELR10	3B
	R227	Resistor	2.2KΩ-J ELR10	2C
	R228	Resistor	2.2KΩ - J ELR10	2B
	R231	Resistor	$22K\Omega$ -J ELR10	10
	R232	Resistor	22K12 -J ELRIU	10
	R233	Resistor		
	RZ34 D225	Resistor	470 JELNIO	20
	R235	Resistor	47Ω -1 ELR10	26
	R238	Resistor	82KΩ -J ELR10	2G
	R239	Resistor	$10K\Omega$ -J ELR10	3G
	R240	Resistor	82K Ω -J ELR10	3G
	R241	Resistor	47 Ω -J ELR10	4G
	R242	Resistor	10K Ω -J ELR10	4G
	R243	Resistor	150Ω -J ELR10	4F
	R244	Resistor	470Ω -J ELR10	4G
	R245	Resistor	2752 -J ELR10	4F
ĺ	R240 P247	Resistor	4732 -JELRIU	4G 4E
	R247	Resistor	4732 -J ELR10	40
	R249	Resistor	2.2KΩ -J ELR10	1F
	R250	Resistor	27Ω -J ELR10	4D
	R252	Resistor	22 Ω -J ELR10	4C
	R253	Resistor	330 Ω -J ELR10	4A
	R254	Resistor	15K Ω -J ELR10	4A
	R256	Resistor	100KΩ-J ELR10	2E
ĺ	R257	Resistor	2.2KΩ -J R10	1G
	C201	Ceramic	0.001µF/50V	1E
	C202	Ceramic	0.001µF/50V	1E
	C203	Ceramic	0.001µF/50V	1E
	C204	Ceramic	0.001µF/50V	1E
	C205	Ceramic	0.001μ F/50V	15
	C206	Ceramic	$0.001\mu F/50V$	10
	C207	Ceramic	$0.001\mu F/50V$	10
	C208	Ceramic	$0.001\mu F/50V$	1D
	C210	Ceramic	0.001µF/50V	1D
	C211	Ceramic	0.001µF/50V	1D
	C212	Ceramic	0.001µF/50V	2D
	C213	Tantalum	10µF/6.3∨	3F
	C214	Barrier Lay	0.01µF/50V TBD05V	3F .
	C215	Electrolytic	10µF/16V MS7	2F
	C217	Ceramic	470pF/50V	3E
	C218	Ceramic	470pF/50V	3D
	C220	Ceramic Electroluti-	300F/50V	
	C221		470pF/50V	4D
J	U644	ogi anno		

[PLL UNIT PARTS]

REF NO.	DESCRIPTIO	ON (PART NO)	BOARD LOCATION
C223	Ceramic	470pF/50V	4F
C224	Ceramic	470pF/50V	4F
C225	Ceramic	10pF/50V UJ	3F
C226	Ceramic	1pF/50V	3F
C227	Ceramic	33pF/50V UJ	3F
C228	Ceramic	3pF/50V	3F
C229	Ceramic	0.001µF/50V	3D
C230	Ceramic	$0.001 \mu F/50V$	3D
C231	Ceramic	8pF/50V	3D
C232	Ceramic	22pF/50V	2C
C233	Barrier I av	0.0047µF/50V	3D
	,	TBD05V	
C235	Ceramic	22nE/50V	1D
C236	Ceramic	$0.001\mu E/50V$	2D
C237	Barrier Lav	0.0047/JE/50V	20
0207	Daniel Edy		20
C238	Ceramic	0.001, F/50V	20
C230	Electrolytic	1000F/10V MSQ	16
C239	Barrior Lav	0.0047Ε/ΕΩ\/	35
C240	Darrier Lay		35
0041	Coromio		10
0241	Ceramic	15-5/50V	25
0242	Ceramic	15pr/50V	25
0243	Ceramic	33pF/50V	26
C244	Ceramic	33pF/50V	
C246	Ceramic	0.001μ F/50V	38
C24/	Ceramic	$0.001 \mu F/50V$	38
C251	Ceramic	0.001µF/50V	10
C252	Ceramic	56pF/50V	10
C253	Ceramic	22pF/50V	10
C254	Ceramic	47pF/50V	2C
C255	Ceramic	0.001µF/50V	20
C256	Ceramic	39pF/50V	3C
C257	Ceramic	5pF/50V	2C
C258	Ceramic	5pF/50V	30
C261	Ceramic	47pF/50V	1G
C262	Ceramic	10pF/50V	2G
C263	Ceramic	0.5pF/50V	2G
C264	Ceramic	0.001µF/50V	2G
C265	Ceramic	10pF/50V	2G
C266	Ceramic	0.001µF/50V	3G
C267	Ceramic	470pF/50V	2F
C268	Ceramic	0.001µF/50V	3G
C269	Electrolytic	4.7μF/25V MS7	3G
C270	Ceramic	7pF/50V	4G
C271	Ceramic	0.35pF/50V	4G
C272	Ceramic	7pF/50V	4G
C273	Ceramic	0.001µF/50V	3G
C274	Ceramic	470pF/50V	4G
C275	Ceramic	47pF/50V	4G
C276	Ceramic	470pF/50V	4F
C277	Ceramic	6pF/50V	4F
C278	Ceramic	0.5pF/50V	4E
C279	Ceramic	6pF/50V	4E
C280	Ceramic	470pF/50V	4F
C281	Ceramic	470pF/50V	4E
C282	Ceramic	47pF/50V	4E
C283	Ceramic	470pF/50V	4E
C284	Ceramic	470pF/50V	4D
C285	Trimmer	20pF	4D
		MCV50D1H200	
C286	Trimmer	10pF	4C
		MCV50D1H100	
C287	Ceramic	27pF/50V	4C
C288	Electrolytic	1µF/50V MS7	4C

[PLL UNIT PARTS]

REF NO.	DESCRIPTI	BOARD LOCATION	
C289	Ceramic	470pF/50V	4C
C290	Trimmer	10pF	4B .
		MCV50D1H100	
C291	Trimmer	20pF	4B
		MCV50D1H200	
C292	Ceramic	470pF/50V	4A
C293	Ceramic	10pF/50V	4A
C294	Ceramic	100pF/50V	4A
C295	Ceramic	33pF/50V	4B
C296	Ceramic	eramic 100pF/50V	
C297	Ceramic	2pF/50V	4A
C298	Ceramic	27pF/50V	4A
C300	Ceramic	470pF/50V	4A
C302	Electrolytic	0.47µF/50V MS7	4C
C303	Ceramic	0.001µF/50V	2E
J201	Connector	SB7P-HVQ-22	1D
J202	Connector	SB5P-HVQ-22	1E
B201	P.C. Board	B-390D	
	Beads Core	DL-20P2.6-3-1.2H	

[MATRIX UNIT PARTS]

REF NO.	DESCRIPTION (PART NO)		BOARD LOCATION	
R401	Resistor	100KΩ-J	R10	1E
R402	Resistor	2.2KΩ -J	R10	1E
R403	Resistor	2.2KΩ -J	R10	1D
R404	Resistor	2.2KΩ -J	R10	3E
R405	Resistor	2.2ΚΩ -J	R10	3B
R406	Resistor	2.2KΩ -J	R10	1D
R407	Resistor	2.2ΚΩ -J	R10	3B
R408	Resistor	2.2KΩ -J	R10	3B
R409	Resistor	2.2ΚΩ -J	R10	3C
R410	Resistor	2.2KΩ -J	R10	3C
R411	Resistor	2.2KΩ -J	R10	2B
R412	Resistor	2.2KΩ -J	R10	1B
R414	Resistor	2.2KΩ -J	R10	3B
J401	Connector	B13B-XH		1E
P401	Connector	F7P-HVQ-K		1C
P402	Connector	F5P-HVQ-K		18
B401	P.C. Board	B-638		
	ł			

SCHEMATIC DIAGRAM

ICOM ICOM INCORPORATED

AC BATTERY CHARGER

CN-30 MAINTENANCE MANUAL

SPECIFICATIONS

Applicable Battery Packs

Number of Semiconductors

Power Supply Requirement

Charging Current

Usable Temperature

Dimensions Weight

IC-CM2, IC-CM3, IC-CM5 IC-CM4 (applies only with Nickel-Cadmium batteries inserted) Transistor 9 2 IC Diode 12 100/117/230V AC 50/60Hz (Input voltage can be selected by changing internal wiring.) 600mA for IC-CM2 and IC-CM5 25mA for IC-CM3 45mA for IC-CM4 (Nickel-Cadmium inserted) $0^{\circ}C \sim +45^{\circ}C$ for IC-CM3 and IC-CM4 +10°C \sim 40°C for IC-CM2 and IC-CM5 72mm(H) x 172mm(W) x 104mm(D) Approx. 1.0kg

DESCRIPTION OF CONTROLS

- 1. Power Switch When the charger is connected to a wall outlet, it turns the charger on.
- 2. Power Lamp Indicates power is on.
- 3. Charge lamp

Indicates charging is underway, goes out then charging of rapid-charge packs is completed.

- 4. Insertion slot for battery packs.
- 5. Charging terminal Correspond to the terminals on the bottom of the battery packs.
- 6. Microswitches. Since the current and capacity for each battery pack is different, these microswitches select the proper factors for each one.

1. Remove the four screws which have retained the cover of the unit as shown in the figure.

2. Remove the cover from the chassis with taking care to donot make damage to the internal wirings as shown. When you wish to remove the PC Board, remove the four screws at each end of the board as shown in the figure.

CIRCUIT DESCRIPTION

This charger provides proper charging current for various battery packs which is selected by charging current selector on the bottom of the battery pack.

Also a constant charging current is provided by controlling conducting phase angle of the SCR in the circuit. It keeps the current constant even if various battery packs which have different output voltage, has been used.

1. CONDUCTING ANGLE CONTROL CIRCUIT

A gate pulse is used to control the thyristor (SCR) in the circuit. This gate pulse is a part of a full-wave rectified wave and its phase angle is controlled by a saw tooth pulse which is synchronized to the full-wave rectified wave.

The pulse falltime of the saw tooth pulse is controlled by an actual charging current, and it decides the phase angle of the gate pulse of between 40 degrees and 160 degrees.

The saw tooth pulse generate circuit consists of Q2, Q5 and C9.

A full-wave rectified voltage is applied to the base of Q2 through R4 and turns Q2 on at near its base line (D portion in the figure), and charges C9 to +9V which from regulator Q1. When the rectified voltage exceeds +9V (out of D portion), Q2 is turned off and the charged voltage of C9 is discharged through Q5, and a saw tooth wave is generated across C9. This saw tooth pulse is fed to Pin 12 of IC2.

When the pulse voltage decreases less than gate's threshold voltage, Pin 11 of IC2 puts out H level voltage. This turns Q4 and Q3 on, and a portion of full-wave rectified voltage is fed to the gate of D6 SCR through Q3, and D6 is turned on.

When the SCR has been turned on, it holds this condition until the power source voltage becomes zero or its cathode is biased by reverse voltage. Thus, when the full-wave rectified voltage becomes less than +9V (D portion in the figure), the SCR will be turned off.

Rated charging current is decided by $R37 \sim R42$. $R37 \sim R42$ are selected by $S3 \sim S5$ which are turned on or off by a battery pack's charging current selector, and are in series with the charging battery.

A voltage across R37, R38 or R39 \sim R42 is integrated by R14 and C16, then fed to the base of Q6. Q5 and Q6 compose a differential amplifier. A reference voltage which is divided from +9V by R11 and R12, is applied to the base of Q5, thus the collector current of Q5 is varied by the base voltage of Q6, and controls discharging time of C9.

For example, when the charging current increases more than the specified charging current, Q6 collector current increases, Q5 collector current decreases, C9 discharging time becomes longer, the phase angle of D6 gate pulse delays (the pulse width becomes narrower), and the charging current decreases.

When the charging current decreases less than the specified charging current, the circuit functions the opposite way and keeps the charging current constant.

2. LOGIC CIRCUIT

The logic circuit is controlled by the charging current select switches S3 \sim S5, and the charging detector Q10.

When charging IC-CM2 or IC-CM5, S5 is turned on by the charging current selector on the battery pack.

The charging current (600mA) flows through R39 \sim R42, and a voltage across these resistors is applied to the base of Q10 and turns it on. Thus, a gate input Pin 1 and 2 of IC2 becomes L level, its output Pin 3 H level. This puts out H level at Pin 4 of IC1, output of a flip-flop consisting of a gate of IC1 and a gate of IC2. Also Pin 10 of IC1 puts out H level and Pin 10 of IC2 L level.

This grounds the emitter of Q4 through R10 and Pin 10 of IC2, and Q3 is turned on during Pin 11 of IC2 is H level and charges the battery pack.

When the battery pack is fully charged, the built-in thermal switch in the pack is turned off and cuts off the \bigcirc charging terminal. Thus, H level is applied to Pin 1 and 2 of IC2, Pin 5 of IC1 and the flip-flop is turned to reverse condition and Pin 4 of IC1 becomes L level. This puts out H level at Pin 10 of IC2 and turns Q4 off, and any charging current does not flow even if the thermal switch has been turned on when the battery pack is cooled.

When the battery pack is removed from the charger, S5 is turned off and Pin 5 of IC1 is grounded through S5. This resets the flip-flop for another charging.

When charging IC-CM3, S3 is turned on and the charging current (25mA) flows through R37.

Pin 5 and 8 of IC1 are grounded through S5, Pin 10 of IC2 is L level and Q4 emitter is grounded through R10. Thus, the charging current flows until the battery pack is removed from the charger.

When charging IC-CM4 inserted nickel-cadmium batteries S4 is turned on and the charging current (45mA) flows through R38. The logic circuit works the same as charging IC-CM3.

	IC-CM2	IC-CM3	IC-CM4	IC-CM4	IC-CM5
Cells [Capacity]	N-425A R (X 6) [400mAH]	N-250A A (X 7) [250mAH]	AA Size Alkaline (X 6)	AA Size Nickel- Cadmium (X 6)	N-425A R (X 9) [400mAH]
Voltage	7.2∨	8.4∨	9.0∨	7.2∨	10.8V
RF Output	1.0W	1.5W	1.5W	1.0W	2.3W
Charging	Rapid	Normal		Normal	Rapid
Charging Time	1 ~ 1.5H	15H		15H	1 ~ 1.5H
Suitable Charger	CM-30	CM30 CM25U ICCM1		CM30	СМ-30
Charging Current	600mA	25mA		45mA	600mA
Ambient Temperature	+10°~+40°C	0°~+45°C		0°~+45°C	+10°~+40°C
Overcharge Protect	0	Х		Х	0
Current Selector					
Height	39m/m	39m/m	49m/m	49m/m	60m/m
Battery Replace	X	X	0	0	X

SPECIFICATIONS OF BATTERY PACKS

BLOCK DIAGRAM

VOLTAGE CHART

TRANSISTOR

Note: Measuring instrument is a $50K\Omega/V$ multimeter.

BATTERY	N	o connectio	on	IC-C	IC-CM3 (25mA)			IC-CM4 (45mA)			IC-CM2/CM5 (600mA)		
TI. NO.	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	
Q 1	9.8	18.0	9.2	9.8	14.5	9.1	9.8	14.5	9.2	9.8	13.0/20.0	9.2	
Q 2	9.4	2.9	9.2	9.4	6.2	9.1	9.4	6.2	9.2	9.4	5.2/4.4	9.2	
Q 3	16.5	15.0	17.0	16.0	2.7	3.2	16.0	2.4	2.6	14.0	5.0/7.8	14.0	
Q 4	9.1	16.5	8.5	1.75	16.0	1.65	1.6	16.0	1.7	3.6/4.8	14.0	3.3/4.4	
Q 5	0.9	2.4	0.32	1.0	6.0	0.45	1.0	6.2	0.45	1.0	4.9/3.9	0.44/0.42	
Q 6	0.7	9.2	0.32	1.05	9.1	0.45	1.0	9.2	0.45	1.0	9.1	0.44/0.42	
Q10	0	7.6	GND	0.75	0.1	GND	0.74	0.1	GND	0.75	0.1	GND	
Q11	0	9.0	GND	0.65	0.1	GND	0.65	0.1	GND	0	8.9	GND	
Q12	0	9.0	GND	0	9.0	GND	0	9.0	GND	0.65	0.1	GND	

IC

IC Condition	PIN NO.														
	Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14
IC1 45r 600r		9.0	9.0	0	9.0	0	0	GND	0	0	9.0	0	9.0	9.0	9.0
	25mA	0	0	9.0	9.0	0	0	GND	0	9.0	9.0	9.0	0	9.0	9.0
	45mA	0	0	9.0	9.0	0	0	GND	0	9.0	9.0	9.0	0	9.0	9.0
	600mA	9.0	9.0	0	9.0	9.0	0	GND	9.0	0	9.0	9.0	9.0	0	9.0
	CUT	9.0	9.0	0	0	9.0	9.0	GND	9.0	0	9.0	9.0	9.0	0	9.0
		0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	9.0	2.5	0	9.0
	25mA	0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	*1.0	*6.0	9.0	9.0
IC2	45mA	0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	*1.0	*5.0	9.0	9.0
	600mA	0.8	0.8	9.0	0	9.0	9.0	GND	9.0	9.0	0	*3.5	*5.0	9.0	9.0
	CUT	4.3	4.3	0	9.0	0	0	GND	0	9.0	9.0	6.0	4.2	9.0	9.0

*Will be varied by battery voltage and/or charging conditions.

PARTS LIST

REF. NO.	DI	ESCRIPTION	REF. NO.	DI	ESCRIPTION
IC1	IC µPD4011		R29	Resistor	100K R25
IC2	IC uPD4011		R30	Resistor	5.6K R25
	10 µ12.011		R31	Resistor	470K R25
01	Transistor	2SC1815-0 Y GL BL	R32	Resistor	22K R25
02	Transistor	2SA1015-Y	R33	Resistor	680 R25
03	Transistor	2SA1015-Y	R34	Resistor	680 R25
04	Transistor	2SC1740-0 R S E	R35	Resistor	10K ELR25
05	Transistor	28C945.P	R36	Resistor	10K ELR25
Q5 06	Transistor	2SC945.P	R37	Resistor	27 R25
010	Transistor	2SC1740-0 R S F	R38	Resistor	15 R25
011	Transistor	2SC1740-0 R S E	R39	Resistor	1 R25
012	Transistor	2SC1740 Q, R, S, E	R40	Resistor	1 R25
QIZ	1141313(01	2501740 Q, R, S, D	R40	Resistor	1 R25
DI	Zener	X7-096	R42	Resistor	1 R25
	Diode	181555	1472	Resistor	1 1(20
D2	Diode	CP.08B	Cl	Flectrolytic	474F/25V
D3	Diode	CP 08B		Electrolytic	$10\mu F/16V$
D4 D5	Diode	1\$1555		Ceramic	470P
D5	SCP	201M		Electrolytic	100 <i>u</i> F/10V
D0	Diada	CPOSP	C5	Ceramic	0.0047
D9	Diode	191555	C5	Ceramic	0.0047
	Diode	151555	C0 C7	Ceramic	0.0047
DI	LED	151555 I D.002P	C8	Ceramic	470P
DI2	Diada	191555		Rarriar Law	0.047
D14	Didde	191322	C10	Caramic	470P
T 1	Chake	I W 16	C10	Ceramic	470P
12	Choke		C13	Ceramic	470P
12	Choke		C14	Caramic	470P
L3	CHOKE	L1[-3	C15	Ceramic	470P
D1	Pasistor	820 FIP25	C16	Electrolytic	470F 10V
	Resistor	220 ELR25	C10	Electrolytic	$\frac{47}{\mu}$ 16V
R2 B2	Desistor	220 ELC25	C20	Ceramic	22μ 10 γ 470Ρ
RS D4	Resistor	SS ELR2S	C20	Coromio	470P
R4	Resistor	22K ELK25	C21	Flootrolytic	
R5 P6	Resistor	2.2K ELK23	022	Electrolytic	2.2µ 50V
RO D7	Resistor	5.5K ELK25 1V D25	C1	Switch	SDI2S
	Resistor	10V P25	51	Switch	52525 D2MS
RO	Perinter	10K K25	55	Switch	D2MS
D 10	Resistor	ATK D25	57 65	Switch	D2MS
D11	Resistor	4/K K25	35	Switch	DZMD
D12	Pasistor	22R ELR25		PC Board	R.430R
R12 D12	Desistor	1.5K ELR25		IC Doald	0 10/0
D1A	Perintor	22K FIR25		HEATSINK	41912
R14 D15	Pasistor	15K ELR25		IIEAISINK	41)12
R16	Resistor	680 FI R75		Fuse Holder	S-N5051
R17	Resistor	820 FIR25		I USC HOIDGI	0110001
R73	Resistor	10K FIR25		Fuse	2 A
R24	Resistor	100K FLR25		1 400	<i>u</i> .1
R25	Resistor	10K FIR25	Т1	Transformer	TP-25
R25	Resistor	100K ELR25	* *	* I WINT OTTING	
R27	Resistor	10K ELR25		Power Cord	OPC-013
R28	Resistor	100K ELR25			
			L	l	

Count on us!

ICOM INC. 6-9-16, Kamihigashi, Hirano-ku, Osaka 547, Japan